-
近年来,重金属-有机物复合污染物广泛地存在水环境中。例如,由于规模化、集约化养殖需求,大量的抗生素类药剂和含重金属(Cu等)饲料被长期用于动物的治疗、预防和促进生长[1-2]。然而,绝大部分的药剂和含重金属饲料未能被充分利用,而是通过畜禽粪便、尿液直接排入周边环境,再经过土壤渗透和径流进入地表水或地下水[3-5]。在此过程中,富含羧基、羟基、氨基等基团或电子供体原子的抗生素分子极易与重金属离子发生络合反应,形成结构稳定和毒性更强的复合污染物[6]。而且,与单一污染物相比,这些复合污染物的吸附降解行为和生物利用度更复杂,导致复合污染物的去除难度更大,给生态环境安全和人类健康带来更加严峻的威胁[7]。因此,亟待研发去除水体重金属-抗生素复合污染的技术。
目前,吸附法是最受关注的复合污染水体处理技术之一[1]。其中,吸附材料的性能优劣是高效去除复合污染物的关键[8-9]。在众多的吸附材料中,广泛存在、生物量巨大的植物纤维因具有多孔、比表面积大和无毒性的优点,从而成为极具潜力的重金属吸附材料。然而,纤维结构中大量的活性羟基被纤维分子内和分子间的氢键束缚,导致其吸附能力不尽如人意,并在实际应用中受到很大的限制[10]。为此,CHEN等[11]使用环氧氯丙烷醚化处理玉米秸秆纤维,使其对Cr(VI) 的吸附量达到200.00 mg·g−1;SUN等[12]利用硬脂酸和丙烯酰胺接枝改性蔗渣纤维,将其吸附Hg(Ⅱ) 的容量提升到178 mg·g−1;胡东英[13]采用十二叔胺接枝修饰亚麻纤维,实现环丙沙星的最大吸附量为247.41 mg·g−1。由此可见,醚化、接枝等改性技术不但可以破坏纤维的氢键结构,而且能够赋予更多的功能性基团,从而有效地改善材料吸附重金属和抗生素的性能[14-16]。但是,上述纤维材料仅具备吸附去除单一污染物的性能,缺乏吸附重金属复合污染物的功能。究其原因,是因为重金属离子主要通过静电、配位络合和离子交换等作用被吸附到材料的亲水位点[17-18]。而抗生素分子不仅与亲水位点之间产生氢键和静电作用,而且还会与疏水位点发生π-π相互作用等[19-20]。而且,重金属离子和抗生素在水环境中还可以发生氧化还原反应和络合反应[21],极易与吸附材料产生架桥作用,导致材料难以发挥吸附效果。由此可见,复合污染的复杂性对纤维醚化和接枝化改性方法提出了更高的要求。此外,改性纤维材料吸附重金属复合污染物的行为机制尚不清晰,尤其机理的定量阐述更是研究甚少。为此,非常有必要利用理论化学计算进一步量化其吸附行为机制,以期为纤维吸附材料设计提供参考。
基于以上分析,本研究首先充分利用来源广泛的玉米秸秆纤维(RCS),通过环氧氯丙烷的醚化和次氮基三乙酸接枝方法,成功地制备出多基团修饰秸秆纤维(NCS)。然后,表征分析NCS材料的微观样貌、比表面积和元素基团,并考察了在不同pH值下NCS对SMZ、Cu(Ⅱ)和SMZ-Cu络合物的吸附性能,再进一步拟合分析其吸附等温线和吸附动力学模型,定性分析吸附行为过程。最后,采用DFT理论计算定量分析NCS的吸附行为机制。
多基团秸秆纤维对水体中铜/磺胺甲恶唑复合污染物的定量吸附性能
Quantitative adsorption behavior of copper/sulfonamides compound pollutants in aqueous solution by multi-groups straw fibers
-
摘要: 以秸秆纤维为研究对象,通过醚化和接枝化修饰方法赋予其纤维结构的季胺基(-N+)、羧基(-COOH)等,从而制备出多基团纤维材料(NCS)。在一元和二元吸附体系中,考察了NCS对不同pH水体中铜/磺胺甲恶唑(SMZ-Cu)复合污染物的去除效果。Langmuir吸附等温线拟合结果表明,NCS对SMZ和Cu(Ⅱ)的最大理论吸附量分别为59.76 mg·g−1和4.71 mg·g−1,以及对络合物中SMZ和Cu(Ⅱ)的最大理论吸附量分别为56.21 mg·g−1和5.54 mg·g−1。吸附过程也符合准二级动力学方程,属于化学吸附。相比而言,NCS在一元吸附体系中更倾向单一吸附SMZ而不是Cu(II)。而且,多重相互作用使NCS在二元吸附体系中主要吸附SMZ-Cu为主,而不是单一污染物。密度泛函理论(DFT)计算不但验证了上述结果,还定量地解释在单一吸附系统中,NCS的-N+结构中-COOH与SMZ中磺酰氨氮结合最稳定,而C-N则与Cu结合能最大;在二元吸附体系中,最主要的吸附结构是SMZ-Cu以Cu接近NCS方式,而络合-解络合-再络合模式是该体系中Cu被吸附增加的原因。
-
关键词:
- 秸秆纤维 /
- 铜/磺胺类抗生素复合物 /
- 基团 /
- 吸附行为 /
- 定量计算
Abstract: Straw fiber was selected as the research object, and then multigroup fiber materials (NCS) were prepared by endowing quaternary amine groups (-N+) and carboxyl groups (-COOH) onto fiber structures through etherification and grafting modification methods. In the single and binary adsorption systems, the removal effects of NCS on copper/sulfamethoxazole (SMZ-Cu) combined pollutants in water at different pHs were investigated. The fitting results of Langmuir adsorption isotherms showed that the maximum theoretical adsorption capacities of NCS to SMZ and Cu (Ⅱ) were 59.76 mg·g−1 and 4.71 mg·g−1, respectively, and the maximum theoretical adsorption capacities of SMZ and Cu (Ⅱ) in the complex were 56.21 mg·g−1 and 5.54 mg·g−1, respectively. The adsorption process also conformed to the pseudo-second-order kinetic equation, and belonged to chemical adsorption. In contrast, NCS was more likely to adsorb SMZ than Cu(Ⅱ) in the single system. Moreover, the multiple interactions caused NCS to mainly adsorb SMZ-Cu in the binary system rather than a single pollutant. Density functional theory (DFT) calculations not only verified the above analysis, but also quantitatively explained the following results in the single adsorption system: In the -N+ structure of NCS, -COOH had the most stable binding energy with sulfonamide nitrogen in SMZ, while C-N had the largest binding energy with Cu. In the binary adsorption system, the most dominant adsorption mechanism was that SMZ-Cu approached NCS in the form of Cu, and the complexation–decomplexation–complexation mode was the reason for increasing Cu adsorption.-
Key words:
- straw fiber /
- copper/sulfa antibiotic complex /
- groups /
- adsorption behavior /
- quantitative calculation
-
表 1 材料的SEM-EDS和BET数据
Table 1. SEM-EDS and BET data of materials
材料类型 C含量/% N含量/% O含量/% S含量/% Cu含量/% 比表面积/(m2·g−1) 总孔隙体积/(cm3·g−1) 平均孔径/nm RCS 51.43 4.67 42.72 0.52 0.66 2.670 2.3×10-3 2.670 NCS 63.03 4.24 31.89 0.84 0.02 0.924 1.53×10-4 6.028 NCS+SMZ 62.15 2.69 33.73 1.40 0.03 2.063 6.78×10-4 29.310 NCS+Cu 66.67 0.42 28.28 0.22 4.41 1.564 5.08×10-4 5.444 NCS+SMZ-Cu 60.81 2.80 32.43 1.96 2.00 1.880 5.2×10-5 4.257 表 2 Langmuir和Freundlich模型拟合参数
Table 2. Langmuir and Freundlich model fitting constants
吸附体系 Langmuir模型 Freundlich模型 Qmax/(mg·g−1) KL/(L·mg−1) R2 Kf/(mg(1−n)·Ln·g−1) 1/n R2 Cu(Ⅱ) 4.71 0.064 0.986 0.778 0.405 0.972 Cu(Ⅱ)(SMZ 50 mg·L−1) 5.54 0.115 0.991 1.662 0.279 0.986 SMZ 59.76 0.048 0.952 8.255 0.482 0.923 SMZ (Cu(Ⅱ) 30 mg·L−1) 56.21 0.044 0.978 4.359 0.577 0.976 表 3 准一级、准二级动力学模型拟合参数
Table 3. Pseudo-first-order and Pseudo-second-order model fittings constants
吸附体系 准一级动力学模型 准二级动力学模型 qe/(mg·g−1) k1/min−1 R2 qe/(mg·g−1) k2/(g·(mg·min)−1) R2 Cu(Ⅱ) 2.043 1.772 0.960 2.179 1.167 0.991 Cu(Ⅱ)(SMZ 50 mg·L−1) 2.508 0.344 0.975 2.774 0.177 0.984 SMZ 35.027 5.827 0.939 36.492 0.274 0.989 SMZ (Cu(Ⅱ) 30 mg·L−1) 25.962 3.303 0.861 27.360 0.189 0.967 -
[1] 徐西蒙, 陈远翔. 水体重金属-有机物复合污染的协同处理技术研究进展[J]. 化工环保, 2020, 40(5): 467-473. doi: 10.3969/j.issn.1006-1878.2020.05.002 [2] 徐舟影, 孟发科, 吕意超, 等. 抗生素与重金属复合污染废水处理的研究进展[J]. 环境科学研究, 2021, 34(11): 2686-2695. [3] JIA S Y, YANG Z, YANG W B, et al. Removal of Cu(II) and tetracycline using an aromatic rings-functionalized chitosan-based flocculant: enhanced interaction between the flocculant and the antibiotic[J]. Chemical Engineering Journal, 2016, 283: 495-503. doi: 10.1016/j.cej.2015.08.003 [4] YANG Z, JIA S Y, ZHANG T T, et al. How heavy metals impact on flocculation of combined pollution of heavy metals-antibiotics: a comparative study[J]. Separation and Purification Technology, 2015, 149: 398-406. doi: 10.1016/j.seppur.2015.06.018 [5] QIAN M, WU H, WANG J, et al. Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China[J]. Science of the Total Environment, 2016, 559: 174-181. doi: 10.1016/j.scitotenv.2016.03.123 [6] 马芳. 小麦秸秆及其纤维素的改性与吸附水体中Pb(Ⅱ)和As(Ⅴ)的机理研究[D]. 咸阳: 西北农林科技大学, 2017. [7] YUAN L, YAN M, HUANG Z, et al. Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution[J]. Journal of Colloid and Interface Science, 2019, 541: 101-113. doi: 10.1016/j.jcis.2019.01.078 [8] LU H, ZHU Z, ZHANG H, et al. Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide[J]. Chemical Engineering Journal, 2015, 276: 365-375. doi: 10.1016/j.cej.2015.04.095 [9] YU J, XIONG J, CHENG B, et al. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders[J]. Journal of Solid State Chemistry, 2005, 178(6): 1968-1972. doi: 10.1016/j.jssc.2005.04.003 [10] 桑丰, 刚淑艳, 李佳, 等. 改性玉米秸秆对海水中Cr(VI)的吸附应用[J]. 河北渔业, 2022(04): 1-5+13. doi: 10.3969/j.issn.1004-6755.2022.04.001 [11] CHEN S H, YUE Q Y, GAO B Y, et al. Removal of Cr(VI) from aqueous solution using modified corn stalks: Characteristic, equilibrium, kinetic and thermodynamic study[J]. Chemical Engineering Journal, 2011, 168(2): 909-917. doi: 10.1016/j.cej.2011.01.063 [12] SUN N, WEN X, YAN C J. Adsorption of mercury ions from wastewater aqueous solution by amide functionalized cellulose from sugarcane bagasse[J]. International Journal of Biological Macromolecules, 2018, 108: 1199-1206. doi: 10.1016/j.ijbiomac.2017.11.027 [13] 胡冬英. 两种季铵化纤维素的制备、表征及应用研究[D]. 哈尔滨: 东北林业大学, 2017. [14] YANG Y, ZHENG L, ZHANG T, et al. Adsorption behavior and mechanism of sulfonamides on phosphonic chelating cellulose under different pH effects[J]. Bioresource Technology, 2019, 288: 121510. doi: 10.1016/j.biortech.2019.121510 [15] HOKKANEN S, BHATNAGAR A, SILLANPÄÄ M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity[J]. Water Research, 2016, 91: 156-173. doi: 10.1016/j.watres.2016.01.008 [16] LIU M, JIA L, ZHAO Z, et al. Fast and robust lead (II) removal from water by bioinspired amyloid lysozyme fibrils conjugated with polyethyleneimine (PEI)[J]. Chemical Engineering Journal, 2020, 390: 124667. doi: 10.1016/j.cej.2020.124667 [17] ZHAO F, REPO E, YIN D, et al. EDTA-cross-linked beta-cyclodextrin: an environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes[J]. Environmental Science & Technology, 2015, 49(17): 10570-10580. [18] QIU H, LING C, YUAN R, et al. Bridging effects behind the coadsorption of copper and sulfamethoxazole by a polyamine-modified resin[J]. Chemical Engineering Journal, 2019, 362: 422-429. doi: 10.1016/j.cej.2019.01.043 [19] CHEN T, LIU F, LING C, et al. Insight into highly efficient coremoval of copper and p-nitrophenol by a newly synthesized polyamine chelating resin from aqueous media: competition and enhancement effect upon site recognition[J]. Environmental Science & Technology, 2013, 47(23): 13652-13660. [20] AHMED M, ZHOU J, NGO H, et al. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges[J]. Science of the Total Environment, 2015, 532: 112-126. doi: 10.1016/j.scitotenv.2015.05.130 [21] ZHOU Y, LIU X, TANG L, et al. Insight into highly efficient co-removal of p-nitrophenol and lead by nitrogen-functionalized magnetic ordered mesoporous carbon: Performance and modelling[J]. Journal of Hazardous Materials, 2017, 333: 80-87. doi: 10.1016/j.jhazmat.2017.03.031 [22] REN J, ZHENG L, SU Y, et al. Competitive adsorption of Cd(II), Pb(II) and Cu(II) ions from acid mine drainage with zero-valent iron/phosphoric titanium dioxide: XPS qualitative analyses and DFT quantitative calculations[J]. Chemical Engineering Journal, 2022, 445: 136778. doi: 10.1016/j.cej.2022.136778 [23] YU H, ZHENG L, ZHANG T, REN J, et al. Adsorption behavior of Cd (II) on TEMPO-oxidized cellulose in inorganic/ organic complex systems[J]. Environmental Research, 2021, 195: 110848. doi: 10.1016/j.envres.2021.110848 [24] BEDIAKO J K, WEI W, KIM S, et al. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber[J]. Journal of Hazardous Materials, 2015, 299: 550-561. doi: 10.1016/j.jhazmat.2015.07.033 [25] ZHENG L, ZHANG S, CHENG W, et al. Theoretical calculations, molecular dynamics simulations and experimental investigation of the adsorption of cadmium(ii) on amidoxime-chelating cellulose[J]. Journal of Materials Chemistry A, 2019, 7(22): 13714-13726. doi: 10.1039/C9TA03622A [26] ZHENG L, YANG Y, MENG P, et al. Absorption of cadmium (II) via sulfur-chelating based cellulose: Characterization, isotherm models and their error analysis[J]. Carbohydrate Polymers, 2019, 209: 38-50. doi: 10.1016/j.carbpol.2019.01.012 [27] ZHENG L, PENG D, MENG P. Promotion effects of nitrogenous and oxygenic functional groups on cadmium (II) removal by carboxylated corn stalk[J]. Journal of Cleaner Production, 2018, 201: 609-623. doi: 10.1016/j.jclepro.2018.08.070 [28] KUMAR M, SINGH S, SHAHI V K. Cross-linked poly(vinyl alcohol)-poly(acrylonitrile-co-2-dimethylamino ethylmethacrylate) based anion-exchange membranes in aqueous media[J]. Journal of Physical Chemistry B, 2010, 114(1): 198-206. doi: 10.1021/jp9082079 [29] 姚之侃. 叔胺两亲共聚物共混膜的制备及其过滤吸附功能的研究[D]. 杭州: 浙江大学, 2015. [30] HUANG B, LIU Y, LIU B, et al. Effect of Cu(II) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2-Chitosan/graphene oxide nanocomposite[J]. Carbohydrate Polymer, 2017, 157: 576-585. doi: 10.1016/j.carbpol.2016.10.025 [31] LI M, LIU Y, LIU S, et al. Cu(II)-influenced adsorption of ciprofloxacin from aqueous solutions by magnetic graphene oxide/nitrilotriacetic acid nanocomposite: competition and enhancement mechanisms[J]. Chemical Engineering Journal, 2017, 319: 219-228. doi: 10.1016/j.cej.2017.03.016 [32] LING C, LI X, ZHANG Z, et al. High adsorption of sulfamethoxazole by an amine-modified polystyrene-divinylbenzene resin and its mechanistic insight[J]. Environmental Science and Technology, 2016, 50(18): 10015-10023. doi: 10.1021/acs.est.6b02846 [33] WANG R Z, HUANG D L, LIU Y G, et al. Synergistic removal of copper and tetracycline from aqueous solution by steam-activated bamboo-derived biochar[J]. Journal of Hazardous Materials, 2020, 384: 121470. doi: 10.1016/j.jhazmat.2019.121470 [34] LI Z, LI M, WANG Z, LIU X. Coadsorption of Cu(II) and tylosin/sulfamethoxazole on biochar stabilized by nano-hydroxyapatite in aqueous environment[J]. Chemical Engineering Journal, 2020, 381: 122785. doi: 10.1016/j.cej.2019.122785 [35] 汪晨. 水中典型药物与重金属的络合行为[D]. 南京: 东南大学, 2016. [36] PUNAMIYA P, SARKAR D, RAKSHIT S, et al. Effect of solution properties, competing ligands, and complexing metal on sorption of tetracyclines on Al-based drinking water treatment residuals[J]. Environmental Science and Pollution Research, 2015, 22(10): 7508-7518. doi: 10.1007/s11356-015-4145-z [37] ZHANG T, ZHENG L, YU H, et al. Solution pH affects single, sequential and binary systems of sulfamethoxazole and cadmium adsorption by self-assembled cellulose: Promotion or inhibition?[J]. Journal of Hazardous Materials, 2021, 402: 124084. doi: 10.1016/j.jhazmat.2020.124084 [38] WEI J, SUN W, PAN W, et al. Comparing the effects of different oxygen-containing functional groups on sulfonamides adsorption by carbon nanotubes: Experiments and theoretical calculation[J]. Chemical Engineering Journal, 2017, 312: 167-179. doi: 10.1016/j.cej.2016.11.133 [39] SONG W, YANG T, WANG X, et al. Experimental and theoretical evidence for competitive interactions of tetracycline and sulfamethazine with reduced graphene oxides[J]. Environmental Science:Nano, 2016, 3(6): 1318-1326. doi: 10.1039/C6EN00306K [40] HOSSAIN M R, HASAN M M, NOOR-E-ASHRAFI, et al. Adsorption behaviour of metronidazole drug molecule on the surface of hydrogenated graphene, boron nitride and boron carbide nanosheets in gaseous and aqueous medium: A comparative DFT and QTAIM insight[J]. Physica E, 2021: 126. [41] LI S, WANG F, PAN W, et al. Molecular insights into the effects of Cu(II) on sulfamethoxazole and 17 β-estradiol adsorption by carbon nanotubes/CoFe2O4 composites[J]. Chemical Engineering Journal, 2019, 373: 995-1002. doi: 10.1016/j.cej.2019.05.111