-
氧氟沙星(ofloxacin,OFX)因其良好的药物动力学特性、广谱抗菌性以及高效的杀菌效果被广泛应用于人畜疾病防治、畜牧及水产养殖等领域[1]。这类药物的半衰期长、化学性质稳定且在生物体内无法被完全地吸收和利用,将通过生物体代谢及废水排放等途径进入水环境中并且长期积累[2-3]。环境中的氧氟沙星将导致抗性微生物的出现,威胁生态平衡和人类健康[4]。因此,急需探索一种高效环保、经济简便的技术以解决此类水污染问题。
电芬顿技术凭借反应条件温和、操作简便、可控性强和环境友好等优点,在诸多难降解废水的处理技术中脱颖而出[5]。传统的电芬顿技术通过阴极原位产H2O2与Fe2+构成Fenton体系,产生·OH来降解污染物[6]。相比于传统的电芬顿技术,异相电芬顿技术反应效率高、不产生铁泥并且可重复利用,受到研究者的青睐。研究表明,在异相电芬顿系统中引入可见光能够有效提高其催化活性[7]。当异相催化剂的带隙能小于可见光的能量时,在可见光的照射下将产生大量光生电子和空穴,不仅能加速催化剂表面金属离子的氧化还原循环来提高催化效率,还可以直接活化H2O2产生高活性自由基,促进污染物的降解[8]。因此,构建异相光电Fenton体系在污染物的降解领域具有极大的发展潜力。
铜铁矿CuFeO2异相催化剂是近年来水处理领域研究的热点材料,其在地球上储量丰富、环境友好且化学性质稳定[9]。不仅如此,CuFeO2禁带宽度较为狭窄,常作为光催化剂用于可见光下制氢[10],还原水中重金属[11]和降解有机染料[12],是一种具有可见光响应的高效催化剂。然而,纯相CuFeO2本身较高的表面能导致其颗粒易团聚,光催化效率较低且对总有机碳(TOC)的去除效果也不理想[13-15]。为提高CuFeO2的光催化性能,研究者提出诸多不同的策略用于催化剂的改性,如控制催化剂的暴露晶面[16]、最小化自由基的迁移距离[9]和微波辅助[17]等。近年来,聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)由于无毒、高稳定性、可生物降解性和空间位阻效应在催化剂改性方面被广泛应用。将PVP与CuFeO2复合,利用PVP可避免团聚、调节形貌和能带隙、促进载流子分离及产生丰富的氧空位等作用对CuFeO2进行改性有望显著提高其催化效率[18-20]。
本研究以PVP作为改性剂,通过简单的低温水热法成功合成了表面具有丰富氧空位的CuFeO2@PVP催化剂。通过多种表征测试了CuFeO2@PVP的形貌、微观结构、光学性能和光电性能等。以CuFeO2@PVP为催化剂、铂片为阳极、碳毡电极为阴极、可见光为光源以及以氧氟沙星(OFX)作为目标污染物,构建了异相光电-Fenton体系;研究了不同体系下OFX的降解率和反应速率;探讨了催化剂投加量、电流密度、pH、共存离子等限制性因素对氧氟沙星降解效果的影响;探究了CuFeO2@PVP催化剂在光电芬顿体系下降解OFX的循环稳定性;揭示了CuFeO2@PVP光电Fenton体系降解OFX的主要活性物质以及OFX的降解机理。
CuFeO2@PVP的制备及其基于光电芬顿降解氧氟沙星
Preparation of CuFeO2@PVP for the photo-electro- Fenton degradation of ofloxacin
-
摘要: 以聚乙烯吡咯烷酮作为改性剂,利用水热法合成了表面具有丰富氧空位的CuFeO2@PVP复合催化剂。通过XRD、FT-IR、SEM、TEM和EPR等方法证实了催化剂的成功合成及确定了催化剂的形貌和微观结构。采用UV-vis DRS、PL、EIS和IT等方法证实了CuFeO2@PVP比CuFeO2具有更好的光学性能及光电性能。不同体系下的降解实验结果表明,CuFeO2@PVP的光电催化活性比纯相CuFeO2有明显的提升,反应速率是纯相CuFeO2的1.79倍,去除率相比于单独的吸附、阳极氧化、光催化、电催化和电芬顿体系分别提高了87.9%、68.2%、67.3%、67%和9.8%,说明可见光、电场和异相催化剂间存在协同效应。进一步探究了催化剂投加量、电流密度、溶液pH、共存离子种类对异相光电芬顿体系降解氧氟沙星(OFX)的影响。结果表明,在最佳催化剂投加量为0.4 g/L、最佳电流密度为4 mA/cm2的条件下,CuFeO2@PVP光电Fenton体系在120 min时对10 mg·L−1 OFX的降解率达到94.3%。pH在5-9之间时对OFX的降解呈现抑制作用,pH在3-3.6之间时降解效果基本持平。溶液中的Cl−对OFX的降解起到轻微的促进作用,而NO3−、PO43−和CO32−会抑制体系对OFX的降解。此外,5次循环降解实验后,CuFeO2@PVP的降解效率降低了13.8%,表明其具有良好的稳定性。自由基淬灭实验和电子顺磁共振结果表明·OH是最主要的活性自由基并基于上述结果推测出可能的降解机理。
-
关键词:
- CuFeO2@PVP /
- 氧空位 /
- 光电芬顿 /
- 氧氟沙星 /
- 降解机理
Abstract: The CuFeO2@PVP catalyst with rich oxygen vacancies was synthesized via a simple one-step hydrothermal method with polyvinylpyrrolidone as modifier. The successful synthesis of the catalyst and its morphology and microstructure were confirmed by XRD, FT-IR, SEM, TEM and EPR methods. UV-vis DRS, PL, EIS and IT were used to confirmed that CuFeO2@PVP has better photocatalytic activity and photoelectrochemical properties than CuFeO2. The results of degradation experiments with different systems showed that the degradation efficiency by CuFeO2@PVP in photo-electro-Fenton system increased significantly, which was 1.79 times as much as pure CuFeO2. The removal rate by photo-electro-Fenton system was 66.8%, 66.5% and 9.3% higher than photocatalysis, electrocatalysis and electro Fenton system, respectively, which indicated that there was a synergistic effect among the visible light, electro and heterogeneous catalyst. The effects of catalyst dosage, current density, solution pH values and coexistence ions on the degradation of OFX were further discussed. The removal rate for 10 mg·L-1 OFX was 94.3% after 120 min oxidation at catalyst dosage of 0.4 g·L−1 and current density of 4 mA/cm2. At pH 5-9, OFX degradation was inhibited, while at pH 3-3.6, the degradation was almost unchanged. Cl− had a slight acceleration effect on OFX degradation, while NO3-, PO43− and CO32− inhibited the reaction. In addition, the degradation efficiency of CuFeO2@PVP decreased by 13.8% after 5 cyclic degradation experiments, indicating that it has good stability. The results of radical quenching experiment and electron paramagnetic resonance showed that ·OH was the main active radical, and the possible degradation mechanism was inferred based on the above results.-
Key words:
- CuFeO2@PVP /
- Oxygen Vacancies /
- photo-electro Fenton /
- ofloxacin /
- degradation mechanism
-
-
[1] NGUYEN T D, ITAYAMA T, RAMARAI R, et al. Chronic ecotoxicology and statistical investigation of ciprofloxacin and ofloxacin to Daphnia magna under extendedly long-term exposure[J]. Environmental Pollution, 2021, 291: 118095. doi: 10.1016/j.envpol.2021.118095 [2] LIU Y, YUAN Y, WANG Z, et al. Removal of ofloxacin from water by natural ilmenite-biochar composite: A study on the synergistic adsorption mechanism of multiple effects[J]. Bioresource Technology, 2022, 363: 127938. doi: 10.1016/j.biortech.2022.127938 [3] RASOULZADEH H, AZARPIRA H, ALINEJAD N, et al. Efficient degradation of Ocufloxin a neutral photo oxidation/reduction system based on the enhanced heterogeneous-homogeneous sulfite-iodide cycle[J]. Optik, 2022, 257: 168878. doi: 10.1016/j.ijleo.2022.168878 [4] MATHUR P, SANYAL D, CALLAHAN D L, et al. Treatment technologies to mitigate the harmful effects of recalcitrant fluoroquinolone antibiotics on the environ- ment and human health[J]. Environmental Pollution, 2021, 291: 118233. doi: 10.1016/j.envpol.2021.118233 [5] LU M, XU Z, ZHAO H, et al. Heterogeneous electro-Fenton catalysis with novel bimetallic CoFeC electrode[J]. Separation and Purification Technology, 2022, 302: 122069. doi: 10.1016/j.seppur.2022.122069 [6] WEN Z, REN S, ZHANG Y, et al. Performance of anode materials in electro-Fenton oxidation of cefoperazone in chloride medium: New insight into simultaneous mineralization and toxic byproducts formation[J]. Journal of Cleaner Production, 2022, 377: 134225. doi: 10.1016/j.jclepro.2022.134225 [7] 龚月湘, 兰华春, 李久义, 等. 光电芬顿矿化草甘膦有机废水[J]. 环境工程学报, 2016, 10(8): 3999-4003. doi: 10.12030/j.cjee.201503080 [8] JIA X, BAI X, JI Z, et al. Insight into the Effective Removal of Ciprofloxacin Using a Two-Dimensional Layered NiO/g-C3N4 Composite in Fe-Free Photo-Electro-Fenton System[J]. Acta Physico Chimica Sinica, 2021, 37(8): 2010042. [9] SCHMACHTENBERG N, SILVESTRI S, SILVERIRA S J, et al. Preparation of delafossite–type CuFeO2 powders by conventional and microwave-assisted hydrothermal routes for use as photo–Fenton catalysts[J]. Journal of Environmental Chemical Engineering, 2019, 7(2): 102954. doi: 10.1016/j.jece.2019.102954 [10] YOUNSI M, AIDER A, BOUGUELIA A, et al. Visible light-induced hydrogen over CuFeO2 via S2O32− oxidation[J]. Solar Energy, 2005, 78(5): 574-580. doi: 10.1016/j.solener.2004.01.012 [11] XU Q, LI R, WANG C, et al. Visible-light photocatalytic reduction of Cr(Ⅵ) using nano-sized delafossite (CuFeO2) synthesized by hydrothermal method[J]. Journal of Alloys and Compounds, 2017, 723: 441-447. doi: 10.1016/j.jallcom.2017.06.243 [12] DARKHOSH F, LASHANIZAGEGAN M, MAHJOUB A R, et al. One pot synthesis of CuFeO2@expanding perlite as a novel efficient floating catalyst for rapid degradation of methylene blue under visible light illumination[J]. Solid State Sciences, 2019, 91: 61-72. doi: 10.1016/j.solidstatesciences.2019.03.009 [13] XIN S, MA B, LIU G, et al. Enhanced heterogeneous photo-Fenton-like degradation of tetracycline over CuFeO2/biochar catalyst through accelerating electron transfer under visible light[J]. Journal of Environmental Management, 2021, 285: 112093. doi: 10.1016/j.jenvman.2021.112093 [14] DENG Q, CHEN H, WANG G, et al. Structural, optical and photoelectrochemical properties of p type Ni doped CuFeO2 by hydrothermal method[J]. Ceramics International, 2020, 46(1): 598-603. doi: 10.1016/j.ceramint.2019.09.008 [15] TU L W, CHANG K S. Hydrothermal fabrication and photocatalytic study of delafossite (CuFeO2) thin films on fluorine-doped tin oxide substrates[J]. Materials Chemistry and Physics, 2021, 267: 124620. doi: 10.1016/j.matchemphys.2021.124620 [16] WANG R, AN H, ZHANG H, et al. High active radicals induced from peroxymonosulfate by mixed crystal types of CuFeO2 as catalysts in the water[J]. Applied Surface Science, 2019, 484: 1118-1127. doi: 10.1016/j.apsusc.2019.04.182 [17] DAI C, NIE Y, TIAN X, et al. Insight into enhanced Fenton-like degradation of antibiotics over CuFeO2 based nanocomposite: To improve the utilization efficiency of ·OH/O2·- via minimizing its migration distance[J]. Chemosphere, 2022, 294: 133743. doi: 10.1016/j.chemosphere.2022.133743 [18] ZHANG B, ZHANG M, ZHANG L, et al. PVP surfactant-modified flower-like BiOBr with tunable bandgap structure for efficient photocatalytic decontamination of pollutants[J]. Applied Surface Science, 2020, 530: 147233. doi: 10.1016/j.apsusc.2020.147233 [19] HU X, ZHANG Y, WANG B, et al. Novel g-C3N4/BiOClxI1-x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light[J]. Applied Catalysis B:Environmental, 2019, 256: 117789. doi: 10.1016/j.apcatb.2019.117789 [20] SENASU T, CHANKHANITTHA T, HEMAVIBOOL K, et al. Solvothermal synthesis of BiOBr photocatalyst with an assistant of PVP for visible-light-driven photocatalytic degradation of fluoroquinolone antibiotics[J]. Catalysis Today, 2022, 384-386: 209-227. doi: 10.1016/j.cattod.2021.04.008 [21] WANG M, LIU C, SHI H, et al. Facile synthesis of chitosan-derived maillard reaction productions coated CuFeO2 with abundant oxygen vacancies for higher Fenton-like catalytic performance[J]. Chemosphere, 2021, 283: 131191. doi: 10.1016/j.chemosphere.2021.131191 [22] ZHUANG G, CHEN Y, ZHUANG Z, et al. Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design[J]. Science China Materials, 2020, 63(11): 2089-2118. doi: 10.1007/s40843-020-1305-6 [23] BAIANO C, SCHIAVO E, GERBALDI C, et al. Role of surface defects in CO2 adsorption and activation on CuFeO2 delafossite oxide[J]. Molecular Catalysis, 2020, 496: 111181. doi: 10.1016/j.mcat.2020.111181 [24] NARKBUAKAEW T, SATTAYAPORN S, SAITO N, et al. Investigation of the Ag species and synergy of Ag-TiO2 and g-C3N4 for the enhancement of photocatalytic activity under UV–Visible light irradiation[J]. Applied Surface Science, 2022, 573: 151617. doi: 10.1016/j.apsusc.2021.151617 [25] MOLOTO W, MAFA P J, MBULE P, et al. Photoinduced electrochemical effect of porous BiPOM on TiO2 photoanode performance for dye-sensitized solar cells application[J]. Materials Today Communications, 2022, 30: 103001. doi: 10.1016/j.mtcomm.2021.103001 [26] LIU Y, ZHANG J, SHENG C, et al. Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J]. Chemical Engineering Journal, 2010, 162(3): 1006-1011. doi: 10.1016/j.cej.2010.07.009 [27] XIN S, HUO S, XIN Y, et al. Heterogeneous photo-electro-Fenton degradation of tetracycline through nitrogen/oxygen self-doped porous biochar supported CuFeO2 multifunctional cathode catalyst under visible light[J]. Applied Catalysis B:Environmental, 2022, 312: 121442. doi: 10.1016/j.apcatb.2022.121442 [28] LIU Y, HE X, FU Y, et al. Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes[J]. Chemical Engineering Journal, 2016, 284: 1317-1327. doi: 10.1016/j.cej.2015.09.034 [29] XU P, WANG P, LI X, et al. Efficient peroxymonosulfate activation by CuO-Fe2O3/MXene composite for atrazine degradation: Performance, coexisting matter influence and mechanism[J]. Chemical Engineering Journal, 2022, 440: 135863. doi: 10.1016/j.cej.2022.135863 [30] HU L, ZHANG G, LIU M, et al. Enhanced degradation of Bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: Effects of pH, inorganic anions, and water matrix[J]. Chemical Engineering Journal, 2018, 338: 300-310. doi: 10.1016/j.cej.2018.01.016 [31] HU P, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied Catalysis B:Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024 [32] LAI L, JI H, ZHANG H, et al. Activation of peroxydisulfate by V-Fe concentrate ore for enhanced degradation of carbamazepine: Surface ≡V(III) and ≡V(IV) as electron donors promoted the regeneration of ≡Fe(II)[J]. Applied Catalysis B:Environmental, 2021, 282: 119559. doi: 10.1016/j.apcatb.2020.119559