-
水体重金属污染已成为破坏生态环境、危害人体健康的重要因素. 重金属可通过矿山开采、金属冶炼、金属加工、化工生产等方式进入水体. 进入水体的重金属污染物大部分迅速由液相转入固相,沉积于底泥中[1]. 因此,底泥是水体重金属的主要受纳体. 底栖动物作为水域生态系统的重要组成部分,长期生活于底泥表面,具有生命周期长、迁移能力差等特点,是底泥重金属污染监测的良好指示生物[2]. 底泥中的重金属也可被底栖动物摄食,通过食物链不断积累传递,危害人类健康. 湘江作为长江的重要支流,曾是全国重金属污染最严重的河流之一. 至今,湘江底泥仍存在不同程度的重金属污染问题,尤以镉含量超标为甚[3]. 铜锈环棱螺(Bellamya aeruginosa)是湘江底栖动物的优势种之一,几乎遍布整个湘江水域. 它既可作为鱼类的天然饵料,也常用于风味美食“嗦螺”的主要原料[4]. 因此,铜锈环棱螺可作为研究水体重金属污染及其对人体健康影响的理想实验材料.
食物中的重金属主要通过消化系统进入人体,但大多不能100%被人体吸收[5]. 传统的食用健康风险评估主要依托体外暴露,未曾考虑人体消化系统(口腔-胃-肠道)的消化作用,即通常采用食物中污染物的实测含量作为计算依据[6‒7],忽略了其在消化系统内的可消化率,造成了实际风险的高估. 为更加准确地表征污染物的食用健康风险,越来越多的学者将生物可给性(bioaccessibility)引入风险评估计算[8‒10]. 食物中重金属的生物可给性是指在人体消化系统中可以溶出的重金属含量的百分比,表示食物中重金属能被人体吸收的相对量[11]. 目前研究食物中重金属生物可给性的常用方法有体内试验(in vivo)和体外试验(in vitro). 由于体内胃肠消化是一个连续的过程,体内试验常选用具有许多与人类相似生物学特征的灵长类动物,但其涉及的科研伦理道德问题备受争议[12]. 体外模拟消化系统(in vitro simulated digestive system)因具有试验快速、易于控制、重现性好、成本低等优点而备受青睐[13]. 已用于模拟重金属生物可给性的体外模拟消化系统有生理原理提取模型(PBET)、生物有效性简化提取模型(SBET)、欧洲生物可给性标准模型(UBM)、德国标准研究院认可的DIN模型、荷兰公共卫生与环境国家研究院建立的RIVM模型等[14]. RIVM模型可对口腔、胃和小肠的3个阶段进行模拟,更加贴近人体消化过程,是全面研究食物重金属生物可给性的一种重要方法.
本研究通过采集湘江干流15个断面的铜锈环棱螺,测定其螺肉中重金属(Cu、Zn、Cr、Cd、Pb)含量,用RIVM模型分析螺肉中重金属在口腔、胃和小肠中的生物可给性,并基于生物可给性结果,利用健康风险模型评估湘江干流铜锈环棱螺肉中重金属经口摄入后对人体产生的健康风险,以期为该类水产品的安全消费提供科学依据.
基于RIVM模型评估湘江干流铜锈环棱螺重金属生物可给性及食用健康风险
Bioaccessibility and risk assessment of heavy metals in Bellamya aeruginosa from the main stream of Xiangjiang River using RIVM’s dispersion model
-
摘要: 重金属污染已成为水产品质量安全存在的主要问题之一. 本研究通过测定湘江干流铜锈环棱螺肉中重金属(Cu、Zn、Cr、Cd、Pb)含量,并基于荷兰RIVM(the Dutch National Institute for Public Health and the Environment)体外消化模型模拟口腔、胃及肠道消化,计算螺肉中Cu、Zn、Cr、Cd、Pb的生物可给性,评估其食用健康风险. 结果表明,螺肉中Cu、Zn、Cr、Cd、Pb的含量范围分别为35.68—116.96、202.51—323.20、4.41—95.93、0.29—16.08、0.12—17.35 mg·kg‒1,且大多高于水产品重金属限量标准. 螺肉中不同重金属的生物可给性差异较大,Zn、Cd和Pb在胃阶段的生物可给性高于口腔和肠阶段,Cu和Cr在肠阶段的生物可给性高于口腔和胃阶段. 基于生物可给性的食用健康风险显示,螺肉中5种重金属的目标危害系数(THQ)和综合危害系数(HI)均小于1,不存在非致癌健康风险;但其综合致癌风险指数(TCR)均大于1×10‒4,存在致癌风险. Cd对TCR值贡献率最高,为主要风险元素.Abstract: Heavy metal pollution has become one of the main problems in the quality and safety of aquatic products. The content and bioaccessibility of five metals (Cu, Zn, Cr, Cd and Pb) in the fifteen different origins of Bellamya aeruginosa sampled from Xiangjiang River were determined. The target hazard quotient (THQ), hazard index (HI) and carcinogenic risk (CR) of analyzed heavy metals in B. aeruginosa were estimated to assess their potential non-carcinogenic and carcinogenic risks to human health. The results showed that the contents of Cu, Zn, Cr, Cd and Pb in the snail meat ranged from 35.68 to 116.96, 202.51 to 323.20, 4.41 to 95.93, 0.29 to 16.08 and 0.12 to 17.35 mg·kg‒1. The heavy metal contents in most of samples exceeded the standard limit of heavy metals in aquatic products. The bioaccessibility of five metals in the snail meat was significantly different. The average bioaccessibility of Zn, Cd and Pb was higher in the gastric phase than in the oral and intestinal phases, while the average bioaccessibility of Cu and Cr was higher in the intestinal phase than in the oral and gastric phases. The bioaccessibility of each metal was no more than 49.35%. The mean values of target hazard quotient (THQ) and hazard index (HI) of five metals in the oral, gastric and intestinal phases were lower than 1, while the mean values of total carcinogenic risk (TCR) were higher than the acceptable value (1×10‒4). The consumption of B. aeruginosa from sampling sites may cause a potential carcinogenic risk. Cd had the highest contribution rate to the value of TCR and thus was the main risk element.
-
Key words:
- bioaccessible content /
- target hazard quotient /
- hazard index /
- total carcinogenic risk
-
表 1 模拟消化液的组分(g·L–1)[15]
Table 1. Constituents of simulated digestive juices (g·L–1)
组分
Constituent唾液
Saliva胃液
Gastric juice十二指肠液
Duodenal juice胆汁
BileNaCl 0.60 5.50 14.02 10.52 KCl 1.79 1.65 1.13 0.75 KSCN 0.40 — — — NaH2PO4 1.78 0.53 — — Na2SO4 1.14 — — — KH2PO4 — — 0.16 — NaHCO3 3.39 — 6.78 11.57 CaCl2 — 0.80 0.40 0.80 MgCl2 — — 0.10 — NH4Cl — 0.61 — — HCl — 5.72 0.16 0.13 尿素Urea 0.40 0.17 0.20 0.50 葡萄糖Glucose — 1.30 — — D-葡萄糖醛酸
D-Glucuronic acid— 0.04 — — D(+)-氨基葡萄糖盐酸盐
D(+)-Glucosamine hydrochloride— 0.66 — — 胃粘膜素Mucin 0.05 6.00 — — α-淀粉酶α-Amylase 0.58 — — − 尿酸Uric acid 0.03 — — — 牛血清蛋白
Bovine serum albumin— 2.00 2.00 3.60 胃蛋白酶Pepsin — 5.00 — — 胰酶Pancreatin — — 18.00 — 脂肪酶Lipase — — 3.00 — 猪胆盐Pig bile salt — — — 60.00 表 2 经口摄入重金属的参考剂量(RfD)和癌症斜率因子(SF)[21]
Table 2. Reference dose (RfD) and cancer slope factor (SF) for each heavy metal by oral intake
Cu Zn Cr Cd Pb RfD/(μg·kg‒1·d‒1) 40 300 3.5 1 4 SF/(kg·d·μg‒1) − − 500 6.1×10‒3 8.5×10‒6 注:“‒”表示无该参数 表 3 成人食用湘江干流铜锈环棱螺的健康风险
Table 3. Potential health risks of eating B. aeruginosa from the main stream of Xiangjiang River
消化阶段
Digestion phaseTHQ HI TCR Cu Zn Cr Cd Pb 口腔 Oral cavity 6.84×10‒2 1.02×10‒2 9×10‒4 0.14 2.2×10‒3 0.22 8.48×10‒4 胃 Stomach 7.03×10‒2 3.39×10‒2 1.91×10‒2 0.43 1.2×10‒3 0.55 2.64×10‒3 肠 Intestines 0.19 3.60×10‒2 8.16×10‒2 0.15 3.1×10‒5 0.46 1.04×10‒3 -
[1] MONROY M, MACEDA-VEIGA A, DE SOSTOA A. Metal concentration in water, sediment and four fish species from Lake Titicaca reveals a large-scale environmental concern [J]. Science of the Total Environment, 2014, 487: 233-244. doi: 10.1016/j.scitotenv.2014.03.134 [2] 邓可伟, 蒋豫, 李颖, 等. 太湖流域铜锈环棱螺体内重金属富集量及膳食风险评价 [J]. 长江流域资源与环境, 2022, 31(7): 1595-1604. DENG K, JIANG Y, LI Y, et al. Accumulations of heavy metals and dietary risk assessment of Bellamya aeruginosa in the Lake Taihu Basin [J]. Resources and Environment in the Yangtze Basin, 2022, 31(7): 1595-1604(in Chinese).
[3] 杨帆, 何丹丹, 袁隆湖, 等. 湖南省水域底泥污染评价及资源化利用分析 [J]. 中国给水排水, 2022, 38(13): 97-104. YANG F, HE D, YUAN L, et al. Assessment of sediment pollution and its resource utilization in the water areas of Hunan Province [J]. China Water and Wastewater, 2022, 38(13): 97-104(in Chinese).
[4] 桂雨婷, 王健, 余建波, 等. 洞庭湖流域湘江铜锈环棱螺(Bellamya aeruginosa)的重金属富集特征及其膳食风险评估 [J]. 湖泊科学, 2019, 31(3): 724-733. doi: 10.18307/2019.0311 GUI Y, WANG J, YU J, et al. Accumulation characteristics of heavy metals and dietary risk assessment of Bellamya aeruginosa in the Xiangjiang River, Lake Dongting Basin [J]. Journal of Lake Science, 2019, 31(3): 724-733(in Chinese). doi: 10.18307/2019.0311
[5] OMAR NA, PRAVEENA SM, ARIS AZ, et al. Health Risk Assessment using in vitro digestion model in assessing bioavailability of heavy metal in rice: A preliminary study [J]. Food Chemistry, 2015, 188: 46-50. doi: 10.1016/j.foodchem.2015.04.087 [6] HUANG M, ZHOU S, SUN B, et al. Heavy metals in wheat grain: Assessment of potential health risk for inhabitants in Kunshan, China [J]. Science of the Total Environment, 2008, 405(1-3): 54-61. doi: 10.1016/j.scitotenv.2008.07.004 [7] DOU M, ZHAO P, WANG Y, et al. Health risk assessment of cadmium pollution emergency for urban populations in Foshan City, China [J]. Environmental Science and Pollution Research, 2017, 24(9): 8071-8086. doi: 10.1007/s11356-017-8437-3 [8] 耿紫琪, 王鹏飞, 付雅祺, 等. 稻米中铬的生物可给性及其对人体的健康风险评价 [J]. 生态毒理学报, 2020, 15(6): 205-211. GENF Z, WANG P, FU Y, et al. Bioaccessibility of chromium in rice and its human health risk assessment [J]. Asian Journal of Ecotoxicology, 2020, 15(6): 205-211(in Chinese).
[9] PRAVEENA SM, OMAR NA. Heavy metal exposure from cooked rice grain ingestion and its potential health risks to humans from total and bioavailable forms analysis [J]. Food Chemistry, 2017, 235: 203-211. doi: 10.1016/j.foodchem.2017.05.049 [10] HAN Q, WANG M, CAO J, et al. , Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China [J]. Ecotoxicology and Environmental Safety, 2020, 191: 110157. doi: 10.1016/j.ecoenv.2019.110157 [11] 李韵雪, 闵远洋, 麦晋贤, 等. 岗梅药材重金属生物可给性及其人体健康风险评价 [J]. 生态毒理学报, 2022, 17(2): 402-412. LI Y, MIN Y, MAI J, et al. Bioavailability determination and human health risk assessment of heavy metals in Ilex asprella medicinal materials [J]. Asian Journal of Ecotoxicology, 2022, 17(2): 402-412(in Chinese).
[12] LI W, WANG W. In vivo oral bioavailability of fish mercury and comparison with in vitro bioaccessibility [J]. Science of the Total Environment, 2019, 683: 648-658. doi: 10.1016/j.scitotenv.2019.05.290 [13] LU R, GAO Z, LI D, et al. Bioaccessibility of arsenic from gastropod along the Xiangjiang River: assessing human health risks using an in vitro digestion model [J]. Ecotoxicology and Environmental Safety, 2020, 193: 110334. doi: 10.1016/j.ecoenv.2020.110334 [14] 李娜, 耿照梦, 郭莹莹, 等. 水产品中重金属生物可给性与生物有效性研究进展 [J]. 食品安全质量检测学报, 2022, 13(5): 1367-1373. doi: 10.3969/j.issn.2095-0381.2022.5.spaqzljcjs202205002 LI N, GENG Z, GUO Y, et al. Research progress of bioaccessibility and bioavailability of heavy metals in aquatic products [J]. Journal of Food Safety and Quality, 2022, 13(5): 1367-1373(in Chinese). doi: 10.3969/j.issn.2095-0381.2022.5.spaqzljcjs202205002
[15] CAROLIEN HM, VERSANTVOORT AGO, ERWIN VK, et al. Applicability of an in vitro digestion model in assessing the bioaccessibiltiy of mycotoxins from food [J]. Food and Chemical Toxicology, 2005, 43: 31-40. doi: 10.1016/j.fct.2004.08.007 [16] BARI ASMF, LAMB D, CHOPPALA G, et al. Arsenic bioaccessibility and fractionation in abandoned mine soils from selected sites in New South Wales, Australia and human health risk assessment [J]. Ecotoxicology and Environmental Safety, 2021, 223: 112611. doi: 10.1016/j.ecoenv.2021.112611 [17] ZHANG R, CHEN T, ZHANG Y, et al. Health risk assessment of heavy metals in agricultural soils and identification of main influencing factors in a typical industrial park in northwest China [J]. Chemosphere, 2022, 252: 126591. [18] KABIR MH, WANG Q, RASHID MH, et al. Assessment of bioaccessibility and health risks of toxic metals in roadside dust of Dhaka City, Bangladesh [J]. Atmosphere, 2022, 13: 488. doi: 10.3390/atmos13030488 [19] YU T, ZHANG Y, HU X, et al. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu Lake, China [J]. Ecotoxicology and Environmental Safety, 2012, 81: 55-64. doi: 10.1016/j.ecoenv.2012.04.014 [20] JIA Y, WANG L, MA L, et al. Speciation analysis of six arsenic species in marketed shellfish: Extraction optimization and health risk assessment [J]. Food Chemistry, 2018, 244: 311-316. doi: 10.1016/j.foodchem.2017.10.064 [21] 胡宇楠, 林承奇, 黄华斌. 九龙江流域稻米重金属生物可给性及食用健康风险 [J]. 环境化学, 2022, 41(7): 2211-2220. HU Y, LIN C, HUANG H. Bioaccessibility of heavy metals and dietary safety of the rice produced in Jiulong River Basin [J]. Environmental Chemistry, 2022, 41(7): 2211-2220(in Chinese).
[22] LI D, WANG J, PI J, et al. Biota-sediment metal accumulation and human health risk assessment of freshwater bivalve Corbicula fluminea in Dongting Lake, China [J]. Environmental Science and Pollution Research, 2019, 26: 14951-14961. doi: 10.1007/s11356-019-04931-7 [23] LI R, TANG X, GUO W, et al. , Spatiotemporal distribution dynamics of heavy metals in water, sediment, and zoobenthos in mainstream sections of the middle and lower Changjiang River [J]. Science of The Total Environment, 2020, 714: 136779. doi: 10.1016/j.scitotenv.2020.136779 [24] 兰砥中, 雷鸣, 周爽, 等. 体外模拟实验法评价湘南某矿区大米中重金属的人体健康风险 [J]. 农业环境科学学报, 2014, 33(10): 1897-1903. doi: 10.11654/jaes.2014.10.004 LAN D, LEI M, ZHOU S, et al. Health risk assessment of heavy metals in rice grains from a mining-impacted area in South Hunan by in vitro simulation method [J]. Journal of Agro-Environment Science, 2014, 33(10): 1897-1903(in Chinese). doi: 10.11654/jaes.2014.10.004
[25] 徐笠, 陆安祥, 王纪华, 等. 食物中重金属的生物可给性和生物有效性的研究方法和应用进展 [J]. 生态毒理学报, 2017, 12(1): 89-97. doi: 10.7524/AJE.1673-5897.20160707001 XU L, LU A, WANG J, et al. Research methods and application of bioaccessibility and bioavailability of heavy metals in food [J]. Asian Journal of Ecotoxicology, 2017, 12(1): 89-97(in Chinese). doi: 10.7524/AJE.1673-5897.20160707001
[26] 李淑芹, 翟俊民. 微量元素与人体健康的关系 [J]. 中国地方病防治杂志, 2008, 23(6): 433-434. doi: 10.3969/j.issn.1001-1889.2008.06.012 LI S, ZHAI J. Relationship between trace elements and human health [J]. Chinese Journal of Control of Endemic Diseases, 2008, 23(6): 433-434(in Chinese). doi: 10.3969/j.issn.1001-1889.2008.06.012
[27] ZORODDU MA, AASETH J, CRISPONI G, et al. The essential metals for humans: a brief overview [J]. Journal of Inorganic Biochemistry, 2019, 195: 120-129. doi: 10.1016/j.jinorgbio.2019.03.013 [28] LEUFROY A, NOEL L, BEAUCHEMIN D, et al. Use of a continuous leaching method to assess the oral bioaccessibility of trace elements in seafood [J]. Food Chemistry, 2012, 135(2): 623-633. doi: 10.1016/j.foodchem.2012.03.119 [29] MOWAT AM, AGACE WW. Regional specialization within the intestinal immune system [J]. Nature Reviews Immunology, 2014, 14(10): 667-685. doi: 10.1038/nri3738 [30] HE M, KE C, TIAN L, et al. Bioaccessibility and health risk assessment of Cu, Cd, and Zn in "colored" oysters [J]. Archives of Environmental Contamination and Toxicology, 2016, 70(3): 595-606. doi: 10.1007/s00244-015-0194-z [31] YU Y, LIU L, CHEN X, et al. Brominated flame retardants and heavy metals in common aquatic products from the pearl river delta, south China: Bioaccessibility assessment and human health implications [J]. Journal of Hazardous Materials, 2021, 403: 124036. doi: 10.1016/j.jhazmat.2020.124036 [32] 孙邈. 微量元素铬 镍与人体健康 [J]. 微量元素与健康研究, 2010, 27(6): 63-64. SUN M. The element chromium, nickel and human health [J]. Studies of Trace Element and Health, 2010, 27(6): 63-64(in Chinese).
[33] CHAI M, LI R, GONG Y, et al. , Bioaccessibility-corrected health risk of heavy metal exposure via shellfish consumption in coastal region of China [J]. Environmental Pollution, 2021, 273: 116529. doi: 10.1016/j.envpol.2021.116529