-
全氟及多氟代烷基化合物 (per- and polyfluoroalkyl substances, PFASs) 是一类人工合成的高氟化学品,被应用于不同的工业和商业产品中,如纺织品、地毯和消防泡沫[1-2]。2001年,全氟辛烷磺酸 (perfluorooctane sulfonate, PFOS) 首次在野生动物中被检测到,此后其在许多野生动物(比如,北极狐、北极熊和海洋生物)和人体中被广泛检出[3-7]。啮齿动物的实验室研究表明,PFAS暴露会降低实验动物体重,增加肝脏重量,引发癌症,改变脂质代谢的路径,且在高剂量暴露时导致机体死亡[8-9]。2009年,PFOS及其盐类和全氟辛基磺酰氟被列入《斯德哥尔摩公约》的持久性有机污染物名单附件B[10]。随着PFOS被逐步淘汰,PFOS替代品开始被大规模使用,如氯化多氟醚磺酸盐 (chlorinated polyfluorinated ether sulfonic acids, 商品名F-53B)。F-53B的主要成分是6:2 氯化多氟醚磺酸盐 (6:2 chlorinated polyfluorinated ether sulfonic acid, 6:2 Cl-PFESA),其中还包括两个同系物杂质 (8:2 Cl-PFESA和10:2 Cl-PFESA)[11]。F-53B主要用途是作为铬电镀行业中的铬雾抑制剂,在中国的年产量约为20—30 t[12]。2013年,Wang等在中国温州市的镀铬电镀行业的废水首次检测到高浓度的F-53B (43—122 μg·L−1)[13],此后,其在野生动物和人体中被检测到[11-12]。F-53B已被证实具有和PFOS类似的生物持久性,生物积累性以及生物毒性。Wang等发现,F-53B对斑马鱼有中度的急性毒性且难以生物降解[13];Cui等研究表明,在黑斑蛙中6:2 Cl-PFESA (平均生物积累因子:1304 L·kg−1) 的生物累积因子高于PFOS (1050 L·kg−1)[12]。越来越多的研究表明F-53B暴露存在潜在生态和健康风险[12]。然而,目前很少的研究对F-53B进行系统的毒理学评价,关于F-53B引起的生物代谢紊乱方面的研究仍存在局限。
本研究采用代谢组学技术和多元统计分析评估新型氟化物 (F-53B) 生物扰动情况,旨在通过1H-NMR代谢组学技术和多元统计分析评估由F-53B暴露引起的大鼠血清代谢紊乱情况。研究结果有助于了解F-53B对哺乳动物的毒性和代谢扰动效应,揭示F-53B潜在代谢机制和健康风险,并为综合评价F-53B的毒理风险提供数据支持。
基于1H NMR的代谢组学方法研究F-53B暴露对大鼠血清代谢表型的影响
Elucidation of F-53B exposure on serum metabolic phenotype in SD rat by NMR-based metabonomic analysis
-
摘要: 氯化多氟醚磺酸盐 (chlorinated polyfluorinated ether sulfonic acids, F-53B) 是全氟烷基磺酸 (perfluorooctane sulfonate, PFOS) 的替代品。大量毒理学实验证明F-53B具有类似PFOS的生物持久性及毒性,但目前国内外尚未报道过关于F-53B的生物代谢扰动机制研究。本研究基于1H-NMR分析了F-53B (50 μg·kg-1·d-1) 暴露28 d后的大鼠血清代谢扰动情况,结合多元统计分析,分析相关差异代谢物和代谢通路变化。暴露组检测到17个差异代谢物,主要包括氨基酸代谢物和碳水化合物代谢物。3条氨基酸代谢通路受到显著影响,包括丙氨酸、天冬氨酸和谷氨酸代谢,组氨酸代谢,苯丙氨酸,酪氨酸和色氨酸生物合成。糖代谢和脂质代谢受到影响。研究结果表明大鼠暴露于F-53B后可能会影响血清的氧化应激反应,引发炎症,心血管疾病,糖尿病和高血压,引起神经毒性且抑制大脑发育。本研究对F-53B暴露产生的代谢扰动进行深入且全面的探究,为评估F-53B的健康风险提供了科学依据。Abstract: Chlorinated polyfluorinated ether sulfonic acid (trade name, F-53B) is an alternative to perfluorooctane sulfonate (PFOS). A large number of toxicological experiments have proved that F-53B has biological persistence and toxicity similar to PFOS, but there is no study on the biological metabolic disturbance mechanism research of F-53B. In this study, SD rats were orally exposed to 50 μg·kg-1·d-1 F-53B for 28 days to evaluate the serum metabolic disturbances of F-53B by 1H-NMR serum metabolomics and then combined with multivariate statistical analysis, the relevant differential metabolites and metabolic pathway changes were analyzed. Results showed that 17 metabolites (mainly including amino acid metabolites and carbohydrate metabolites) and 3 metabolic pathways (alanine, aspartic acid, and glutamate metabolism; histidine metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis) were disturbed by F-53B exposure. Sugar metabolism and lipid metabolism were affected. The results of the study indicated that exposure to F-53B may affect the oxidative stress response of the serum, cause inflammation, cardiovascular disease, diabetes, and hypertension, cause neurotoxicity and inhibit brain development. This study provides an in-depth and comprehensive exploration of the metabolic disturbances caused by F-53B exposure, and a scientific basis for assessing the health risks of F-53B.
-
Key words:
- metabolomics /
- 1H-NMR /
- F-53B /
- SD rats /
- serum
-
表 1 大鼠血清代谢物1H-NMR谱的信号指认
Table 1. Identify the metabolites in the 1H-NMR spectra of the rat serum
No. 代谢产物
Metabolites化学位移(ppm)及多重性δ
1H and Multiplicity1 Leucine 0.95(dd), 1.70(m), 3.72(m) 2 Isoleucine 0.93(t), 1.02(d), 1.25(m), 1.46(m), 1.95(m), 3.66(d) 3 Valine 0.97(d), 1.05(d), 2.26(m), 3.61(d) 4 Lipid 0.82—0.90(bar), 1.24—1.31(bar) 5 Isobutyrate 1.06(d), 2.37(m) 6 Ethanol 1.17(t), 3.65(dd) 7 3-Hydroxybutyrate 1.19(d), 2.30(dd), 2.39(dd), 4.15(m) 8 Alanine 1.47(d), 3.78(dd) 9 Arginine 1.65(m), 1.73(m), 3.23(t), 3.76(t) 10 Lysine 1.43(m), 1.49(m), 1.70(m), 1.91(m), 3.02(t), 3.75(t) 11 Acetate 1.92(s) 12 NAc1* 2.02—2.06(bar) 13 NAc2* 2.12—2.17(bar) 14 Glutamate 2.05(m), 2.12(m), 3.75(dd) 15 Glutamine 2.12(m), 2.44(m), 3.77(t) 16 Succinate 2.39(s) 17 Aspartate 2.67(dd), 2.81(dd), 3.89(dd) 18 Citrate 2.51(d), 2.68(d) 19 PUFA 2.72—2.84(bar) 20 Asparagine 2.85(dd), 2.94(dd), 4.01(dd) 21 Ornithine 1.73(m), 1.82(m), 1.93(m), 3.05(t), 3.78(t) 22 Creatine 3.02(s), 3.93(s) 23 Citrulline 1.53(m), 1.59(m), 3.13(m), 3.74(dd), 6.34(bar) 24 Choline 3.19(s), 3.51(m), 4.05(m) 25 PC* 3.20(s), 3.58(m), 4.16(m) 27 Glucose 3.23(m), 3.40(m), 3.47(m), 3.53(dd), 3.83(m), 3.89(dd), 4.64(d),5.23(d) 28 Taurine 3.25(t), 3.42(t) 29 Glycerol 3.55(dd), 3.64(dd), 3.77(m) 30 Glycine 3.56(s) 31 Serine 3.84(m), 3.94(dd), 3.98(dd) 32 Lactate 1.33(d), 4.12(dd) 33 Threonine 1.33(d), 3.58(d), 4.25(m) 34 Fumarate 6.51(s) 35 Tyrosine 6.88(d), 7.18(d) 36 Histidine 7.06(s), 7.85(s) 37 Phenylalanine 7.33(m), 7.35(m), 7.42(m) 38 Xanthine 7.91(s) 39 Formate 8.46(s) 40 GPC* 3.22(s), 3.60(m), 3.67(m), 3.86(m), 3.93(m), 4.32(m) *NAc1 and NAc2 为乙酰基信号(α-acid glycoprotein); PC 为磷酸胆碱(phosphocholine)信号; GPC 为甘油磷酰胆 (glycerophosphocholine) 信号. 表 2 差异性代谢物对比
Table 2. Differential metabolites comparison of the two groups
类别
Classification代谢产物
Metabolites对照组 vs 暴露组
Control vs. F-53BAmino acid metabolism Aspartate ** Tyrosine * Histidine ## Isobutyrate ** Alanine ** Ornithine ## Threonine # Asparagine ## Carbohydrate metabolism Lactate ** Glucose # Citrate ** Fatty acid metabolism Glycerol ** 3-Hydroxybutyrate ** Residual metabolism GPC # NAc1 ** Lipid # Choline ** “*”和“#”表示P < 0.05,“**”和“##”表示P < 0.01; “#”表示上调,“*”表示下调. -
[1] 郭萌萌, 崔文杰, 刘晓玉, 等. 黄渤海区域水产品中全氟烷基物质的分布特征 [J]. 中国环境科学, 2020, 40(8): 3424-3432. doi: 10.3969/j.issn.1000-6923.2020.08.021 GUO M M, CUI W J, LIU X Y, et al. Distribution of perfluoroalkyl substances in aquatic products in coastal and adjacent areas of the Yellow Sea and Bohai Sea, China [J]. China Environmental Science, 2020, 40(8): 3424-3432(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.08.021
[2] KOTTHOFF M, MÜLLER J, JÜRLING H, et al. Perfluoroalkyl and polyfluoroalkyl substances in consumer products [J]. Environmental Science and Pollution Research, 2015, 22(19): 14546-14559. doi: 10.1007/s11356-015-4202-7 [3] AAS C B, FUGLEI E, HERZKE D, et al. Effect of body condition on tissue distribution of perfluoroalkyl substances (PFASs) in arctic fox (Vulpes lagopus) [J]. Environmental Science & Technology, 2014, 48(19): 11654-11661. [4] CHEN H, HAN J B, CHENG J Y, et al. Distribution, bioaccumulation and trophic transfer of chlorinated polyfluoroalkyl ether sulfonic acids in the marine food web of Bohai, China [J]. Environmental Pollution, 2018, 241: 504-510. doi: 10.1016/j.envpol.2018.05.087 [5] ROUTTI H, ATWOOD T C, BECHSHOFT T, et al. State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic [J]. Science of the Total Environment, 2019, 664: 1063-1083. doi: 10.1016/j.scitotenv.2019.02.030 [6] PÉREZ F, NADAL M, NAVARRO-ORTEGA A, et al. Accumulation of perfluoroalkyl substances in human tissues [J]. Environment International, 2013, 59: 354-362. doi: 10.1016/j.envint.2013.06.004 [7] GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife [J]. Environmental Science & Technology, 2001, 35(7): 1339-1342. [8] LINDSTROM A B, STRYNAR M J, LIBELO E L. Polyfluorinated compounds: Past, present, and future [J]. Environmental Science & Technology, 2011, 45(19): 7954-7961. [9] SEACAT A M, THOMFORD P J, HANSEN K J, et al. Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats [J]. Toxicology, 2003, 183(1/2/3): 117-131. [10] 王亚韡, 蔡亚岐, 江桂斌. 斯德哥尔摩公约新增持久性有机污染物的一些研究进展 [J]. 中国科学:化学, 2010, 40(2): 99-123. doi: 10.1360/zb2010-40-2-99 WANG Y W, CAI Y Q, JIANG G B. Research processes of persistent organic pollutants (POPs) newly listed and candidate POPs in Stockholm Convention [J]. Scientia Sinica (Chimica), 2010, 40(2): 99-123(in Chinese). doi: 10.1360/zb2010-40-2-99
[11] JIN Q, MA J H, SHI Y L, et al. Biomonitoring of chlorinated polyfluoroalkyl ether sulfonic acid in the general population in central and Eastern China: Occurrence and associations with age/sex [J]. Environment International, 2020, 144: 106043. doi: 10.1016/j.envint.2020.106043 [12] CUI Q Q, PAN Y T, ZHANG H X, et al. Occurrence and tissue distribution of novel perfluoroether carboxylic and sulfonic acids and legacy per/polyfluoroalkyl substances in black-spotted frog (Pelophylax nigromaculatus) [J]. Environmental Science & Technology, 2018, 52(3): 982-990. [13] WANG S W, HUANG J, YANG Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years: Its toxicity, persistence, and presence in the environment [J]. Environmental Science & Technology, 2013, 47(18): 10163-10170. [14] JIN H B, LIN S, DAI W, et al. Exposure sources of perfluoroalkyl acids and influence of age and gender on concentrations of chlorinated polyfluorinated ether sulfonates in human serum from China [J]. Environment International, 2020, 138: 105651. doi: 10.1016/j.envint.2020.105651 [15] GU J P, JI C Y, YUE S Q, et al. Enantioselective effects of metalaxyl enantiomers in adolescent rat metabolic profiles using NMR-based metabolomics [J]. Environmental Science & Technology, 2018, 52(9): 5438-5447. [16] 顾金苹. 用基于NMR的代谢组学方法研究胃炎癌化过程的代谢网络和分子机制[D]. 厦门: 厦门大学, 2016: 89-91. GU J P. Elucidation of metabolic networks and molecular mechanisms of gastric carcinogenesis by NMR-based metabonomic analysis[D]. Xiamen: Xiamen University, 2016: 89-91(in Chinese).
[17] FENG R N, NIU Y C, SUN X W, et al. Histidine supplementation improves insulin resistance through suppressed inflammation in obese women with the metabolic syndrome: A randomised controlled trial [J]. Diabetologia, 2013, 56(5): 985-994. doi: 10.1007/s00125-013-2839-7 [18] ZHANG Z W, ZHANG X W, MENG L, et al. Pioglitazone inhibits diabetes-induced atrial mitochondrial oxidative stress and improves mitochondrial biogenesis, dynamics, and function through the PPAR-γ/PGC-1α signaling pathway [J]. Frontiers in Pharmacology, 2021, 12: 658362. doi: 10.3389/fphar.2021.658362 [19] BONATO M, CORRÀ F, BELLIO M, et al. PFAS environmental pollution and antioxidant responses: An overview of the impact on human field [J]. International Journal of Environmental Research and Public Health, 2020, 17(21): 8020. doi: 10.3390/ijerph17218020 [20] WIELSØE M, LONG M H, GHISARI M, et al. Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro [J]. Chemosphere, 2015, 129: 239-245. doi: 10.1016/j.chemosphere.2014.10.014 [21] CHEN T, ZHANG L, YUE J Q, et al. Prenatal PFOS exposure induces oxidative stress and apoptosis in the lung of rat off-spring [J]. Reproductive Toxicology, 2012, 33(4): 538-545. doi: 10.1016/j.reprotox.2011.03.003 [22] WU Y M, DENG M, JIN Y X, et al. Uptake and elimination of emerging polyfluoroalkyl substance F-53B in zebrafish larvae: Response of oxidative stress biomarkers [J]. Chemosphere, 2019, 215: 182-188. doi: 10.1016/j.chemosphere.2018.10.025 [23] RYU M H, JHA A, OJO O O, et al. Chronic exposure to perfluorinated compounds: Impact on airway hyperresponsiveness and inflammation [J]. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2014, 307(10): L765-L774. doi: 10.1152/ajplung.00100.2014 [24] GOSTNER J M, BECKER K, KURZ K, et al. Disturbed amino acid metabolism in HIV: Association with neuropsychiatric symptoms [J]. Frontiers in Psychiatry, 2015, 6: 97. [25] FOGUTH R, SEPÚLVEDA M S, CANNON J. Per- and polyfluoroalkyl substances (PFAS) neurotoxicity in sentinel and non-traditional laboratory model systems: Potential utility in predicting adverse outcomes in human health [J]. Toxics, 2020, 8(2): 42. doi: 10.3390/toxics8020042 [26] JOHANSSON N, FREDRIKSSON A, ERIKSSON P. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice [J]. NeuroToxicology, 2008, 29(1): 160-169. doi: 10.1016/j.neuro.2007.10.008 [27] CUI L, ZHOU Q F, LIAO C Y, et al. Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis [J]. Archives of Environmental Contamination and Toxicology, 2008, 56(2): 338-349. [28] KLEIN J, KÖPPEN A, LÖFFELHOLZ K. Regulation of free choline in rat brain: Dietary and pharmacological manipulations [J]. Neurochemistry International, 1998, 32(5/6): 479-485. [29] BIRRU R L, LIANG H W, FAROOQ F, et al. A pathway level analysis of PFAS exposure and risk of gestational diabetes mellitus [J]. Environmental Health, 2021, 20(1): 63. doi: 10.1186/s12940-021-00740-z [30] SCHURR A. Lactate: the ultimate cerebral oxidative energy substrate? [J]. Journal of Cerebral Blood Flow and Metabolism, 2006, 26(1): 142-152. doi: 10.1038/sj.jcbfm.9600174 [31] NIKKILAE E A, OJALA K. Glycerol as an endogenous precursor of body glucose in the rat [J]. Annales Medicinae Experimentalis et Biologiae Fenniae, 1963, 41: 478-484. [32] 霍丽丽, 纪立农. 血清丙氨酸转氨酶与糖代谢状况关系的研究 [J]. 中国糖尿病杂志, 2012, 20(2): 91-94. doi: 10.3969/j.issn.1006-6187.2012.02.001 HUO L L, JI L N. Study of relationship between serum alanine aminotransferase level and the different states of glucose metabolism [J]. Chinese Journal of Diabetes, 2012, 20(2): 91-94(in Chinese). doi: 10.3969/j.issn.1006-6187.2012.02.001
[33] CHAMPE P C, HARVEY R A. Lippincott's Illustrated Reviews: Biochemistry[M]. Second Edition. Philadelphia: Lippencott Williams & Wilkins, 2007: 163-205. [34] 张王宁, 李爱平, 刘少博, 等. 基于代谢组学的阿霉素肾病大鼠模型损伤程度评价 [J]. 中草药, 2018, 49(2): 360-367. doi: 10.7501/j.issn.0253-2670.2018.02.015 ZHANG W N, LI A P, LIU S B, et al. Evaluation of injury degree of rat nephropathy model induced by doxorubicin based on metabolomics [J]. Chinese Traditional and Herbal Drugs, 2018, 49(2): 360-367(in Chinese). doi: 10.7501/j.issn.0253-2670.2018.02.015
[35] DU H Z, ZHAO Y R, YIN Z W, et al. The role of miR-320 in glucose and lipid metabolism disorder-associated diseases [J]. International Journal of Biological Sciences, 2021, 17(2): 402-416. doi: 10.7150/ijbs.53419 [36] MA S Y, XU C, MA J, et al. Association between perfluoroalkyl substance concentrations and blood pressure in adolescents [J]. Environmental Pollution, 2019, 254: 112971. doi: 10.1016/j.envpol.2019.112971 [37] MI X, YANG Y Q, ZEESHAN M, et al. Serum levels of per- and polyfluoroalkyl substances alternatives and blood pressure by sex status: Isomers of C8 health project in China [J]. Chemosphere, 2020, 261: 127691. doi: 10.1016/j.chemosphere.2020.127691 [38] HAN X, MENG L L, ZHANG G X, et al. Exposure to novel and legacy per- and polyfluoroalkyl substances (PFASs) and associations with type 2 diabetes: A case-control study in East China [J]. Environment International, 2021, 156: 106637. doi: 10.1016/j.envint.2021.106637