-
抗生素被大量应用于医疗和养殖等领域,导致环境中抗生素残留无处不在,甚至在饮用水和牛奶中,都普遍检测出抗生素残留[1-3]。纳米银是一种良好的抗菌剂,同样被广泛用于灭菌和消毒等过程,并在食品、医疗、纺织和建材等行业被大量使用[4-5],因此环境中不可避免地存在纳米银残留[6]。同时,由于抗生素和纳米银在医疗领域均被大量应用,导致二者在医疗环境中广泛共存[4]。并且,来自于医疗废水、生活污水和工业废水中的抗生素以及纳米银会汇集于污水处理厂,并经由污水处理厂的出水和污泥处置等方式进入环境水体或土壤中,造成二者在自然环境中的普遍共存[7]。鉴于此,抗生素和纳米银联合暴露对生态环境尤其是微生物群体的影响需要引起格外重视。以往的研究表明,抗生素和纳米银联合作用时会产生比各自单独作用时更强的抑菌活性。例如,Huang等[8]发现,纳米银和链霉素对大肠杆菌和金黄色葡萄球菌均表现出显著的协同抑制作用;王孟珍等[9]发现,纳米银复合材料和卡那霉素对大肠杆菌能够产生协同抑制作用。除直接的抑菌效应外,抗生素和纳米银还能够促进细菌耐药性的产生和传播[10-12],加剧环境中耐药细菌和耐药基因的污染问题,直接危害环境和人体健康。然而,纳米银和抗生素的联合暴露对细菌耐药性的影响尚未引起足够的重视。
突变是细菌产生抗生素耐药性的主要原因之一[13]。突变是指基因在复制或修复过程中发生碱基组成或排列的变化,包括碱基的替换、缺失、重复或插入等,其中导致细菌产生抗生素耐药表型的突变即为抗性突变。大量研究表明,细菌在抗生素以及各种非抗生素药物的作用下,抗性突变会被显著促进。例如,Manna等[14]发现,甲氧苄氨嘧啶能够通过诱导大肠杆菌folA基因的突变,促进其对抗生素的耐药性;Lu等[15]发现,三氯生通过促进fabI、frdD、marR、acrR和soxR等基因的突变而显著提高大肠杆菌对多种抗生素的耐药性。此外,最近的研究表明,纳米材料如纳米Al2O3和ZnO等能够通过诱导细菌胞内活性氧物种(ROS)的产生,促进细菌对抗生素的抗性突变[16]。然而,纳米银作为一种常用的纳米抗菌剂,其对细菌抗性突变的影响尚未见相关的报道。更重要的是,目前研究大都关注的是单一污染物对细菌抗性突变的影响,抗生素和纳米材料联合暴露对细菌抗性突变的影响仍有待进一步研究。
本文选取四环素(Tetracycline, TET)、氯霉素(Chloramphenicol, CHL)和纳米银(AgNPs)作为研究对象,以大肠杆菌(E. coli)作为模式细菌,测定了抗生素和纳米银分别单一和联合作用时对细菌的生长抑制效应以及抗性突变诱导效应,借助DNA测序和分子对接结合的方式验证了细菌的抗性突变位点和抗性机制,同时采用qPCR技术测定了细菌胞内与突变相关的基因表达(rpoS、recA、lexA、dinB、mutS和uvrD),对抗生素和纳米银的联合抗性突变诱导效应进行了初步的机制阐释。
抗生素和纳米银对大肠杆菌的联合毒性和抗性突变诱导效应
Joint toxicity and resistance mutation-inducing effect of antibiotics and AgNPs on Escherichia coli
-
摘要: 抗生素和纳米银因在各自领域的大量应用而不可避免地进入环境中,对生态环境尤其是微生物群体构成联合暴露的风险,但是二者对细菌生长和耐药性的联合作用,目前受到的关注较少。本研究测定了两种抗生素(四环素和氯霉素)以及纳米银(10—15 nm)对大肠杆菌的联合毒性及对细菌抗性突变的诱导作用,并对相关机制进行了初步探讨。结果表明,抗生素和纳米银对细菌的联合毒性呈现协同效应,但是二者联合作用下细菌对利福平的抗性突变频率显著降低。DNA测序和分子对接结果表明,编码利福平靶标蛋白的rpoB基因发生点突变,导致突变后的靶蛋白与利福平的结合能降低。同时,qPCR结果表明抗生素和纳米银联合作用时,细菌胞内rpoS、dinB和mutS等基因表达显著上调,可能是抗性突变频率在联合作用下降低的主要原因。本研究揭示了抗生素和纳米银联合作用对细菌抗性突变的影响,有利于全面认识二者联合暴露的环境和健康风险。Abstract: Antibiotics and nanosilver (AgNPs) are extensively applied in their respective fields and have high probability to co-exist in the environment, posing joint exposure risks on environmental organisms, especially on bacterial communities. However, the combined effects of antibiotics and AgNPs on bacterial growth and bacterial resistance mutations remain largely underexplored. In this study, the single and joint effects of two antibiotics (tetracycline and chloramphenicol) and AgNPs (10−15 nm) on bacterial growth and resistance mutations were investigated using Escherichia coli as a model bacterium, and the underlying mechanisms for the joint effects were explored. The results suggested that the antibiotics and AgNPs had synergistic effects on bacterial growth whilst antagonistic effects on the mutation frequency of E. coli against rifampicin, in comparison with their single actions. Furthermore, DNA sequencing and molecular docking results showed that point mutations occurred on rpoB gene that encodes the rifampicin target protein, leading to a decrease in the binding energy of the mutated protein with rifampicin. In addition, qPCR results showed that the gene expressions of rpoS, dinB and mutS in E. coli were significantly promoted upon exposure to antibiotics and AgNPs mixtures, which was likely a major cause for the significant decrease of the resistance mutations. This study is conducive to a comprehensive understanding of the environmental and health risks of combined exposure to antibiotics and AgNPs and provides a reference for assessment of their joint exposure risks.
-
Key words:
- nanosilver /
- antibiotics /
- Escherichia coli /
- combined toxicity /
- resistance mutation
-
图 3 (a)空白组和暴露组下大肠杆菌突变位点碱基变化及氨基酸变化;(b)大肠杆菌RpoB利福平抗性决定区域(RRDR—1)突变氨基酸位置与利福平结构图;(c)RpoB蛋白与利福平对接相互作用能
Figure 3. (a)Mutation sites and base changes of E. coli in the blank and exposed groups; (b)Amino acid location and rifampicin structure diagram of RpoB rifampicin resistance determination region(RRDR—I)mutant in E. coli; (c)Docking interaction energy between RpoB protein and rifampicin molecule.
表 1 化合物单独和联合作用对大肠杆菌的半数抑制浓度(IC50)
Table 1. The IC50 value of target substances against E. coli when acting alone or in combination
暴露组
Exposure group组分
ComponentsIC50(95% CI)/(μmol∙L−1) 单一暴露
Individual exposure四环素(TET) 1.41(1.29—1.52) 氯霉素(CHL) 2.26(1.92—2.64) 纳米银(AgNPs) 0.87 (0.61—1.18) 银离子(Ag+) 0.36 (0.32—0.43) 联合暴露
Combined exposureTET−AgNPs 0.56 (0.41—0.74) TET−Ag+ 0.94 (0.65—1.27) CHL−AgNPs 0.94 (0.72—1.02) CHL−Ag+ 0.96 (0.77—1.18) 注: IC50表示半抑制浓度,CI表示置信区间.
Note: IC50 is concentration for 50% of maximal inhibition, CI stands for confidence interval. -
[1] WANG H X, WANG N, WANG B, et al. Antibiotics in drinking water in Shanghai and their contribution to antibiotic exposure of school children [J]. Environmental Science & Technology, 2016, 50(5): 2692-2699. [2] DU B Y, WEN F, GUO X D, et al. Evaluation of an ELISA-based visualization microarray chip technique for the detection of veterinary antibiotics in milk [J]. Food Control, 2019, 106: 106713. doi: 10.1016/j.foodcont.2019.106713 [3] LYU J, YANG L S, ZHANG L, et al. Antibiotics in soil and water in China-a systematic review and source analysis [J]. Environmental Pollution, 2020, 266: 115147. doi: 10.1016/j.envpol.2020.115147 [4] RIZZELLO L, POMPA P P. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines [J]. Chemical Society Reviews, 2014, 43(5): 1501-1518. doi: 10.1039/C3CS60218D [5] 吴宗山, 胡海洋, 任艺, 等. 纳米银的抗菌机理研究进展 [J]. 化工进展, 2015, 34(5): 1349-1356,1370. doi: 10.16085/j.issn.1000-6613.2015.05.028 WU Z S, HU H Y, REN Y, et al. Progress of antibacterial mechanisms of silver nanoparticles [J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1349-1356,1370(in Chinese). doi: 10.16085/j.issn.1000-6613.2015.05.028
[6] 唐诗璟, 郑雄, 陈银广. 水体环境中纳米银的来源、迁移转化及毒性效应的研究进展 [J]. 化工进展, 2013, 32(11): 2727-2733. TANG S J, ZHENG X, CHEN Y G. Research progresses in aquatic environmental silver nanoparticles: Sources, transformation and toxicity [J]. Chemical Industry and Engineering Progress, 2013, 32(11): 2727-2733(in Chinese).
[7] MCGILLICUDDY E, MURRAY I, KAVANAGH S, et al. Silver nanoparticles in the environment: Sources, detection and ecotoxicology [J]. Science of the Total Environment, 2017, 575: 231-246. doi: 10.1016/j.scitotenv.2016.10.041 [8] HUANG W D, WANG J, WANG Z X, et al. Synergistic antimicrobial activity of silver nanoparticles combined with streptomycin sulfate against gram-negative and gram-positive bacteria [J]. Molecular Crystals and Liquid Crystals, 2021, 714(1): 80-88. doi: 10.1080/15421406.2020.1856610 [9] 王孟珍, 孙昊宇, 龙茜, 等. 纳米银复合材料与抗生素的联合抗菌性能及相关机制研究 [J]. 生态毒理学报, 2020, 15(2): 39-49. doi: 10.7524/AJE.1673-5897.20191204001 WANG M Z, SUN H Y, LONG X, et al. Combined antibacterial property and mechanism of nanosilver composites and antibiotics against bacteria [J]. Asian Journal of Ecotoxicology, 2020, 15(2): 39-49(in Chinese). doi: 10.7524/AJE.1673-5897.20191204001
[10] 卢文强, 孙昊宇, 王雅娟, 等. 抗生素的胁迫与抗生素抗性基因产生与传播关系的研究 [J]. 生态毒理学报, 2020, 15(4): 129-138. LU W Q, SUN H Y, WANG Y J, et al. The relationship of antibiotic stress with emergence and dissemination of antibiotic resistance genes [J]. Asian Journal of Ecotoxicology, 2020, 15(4): 129-138(in Chinese).
[11] 赖晓琳, 吴平霄, 阮博. 四环素对大肠杆菌抗生素抗性基因进化的影响 [J]. 环境科学学报, 2019, 39(8): 2475-2482. LAI X L, WU P X, RUAN B. Evolution of antibiotic resistance genes in E. coli by tetracycline [J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2475-2482(in Chinese).
[12] 李旭飞, 巫晓丹, 孙昊宇, 等. 抗生素和纳米银对大肠杆菌耐药性的联合效应 [J]. 中国环境科学, 2020, 40(11): 5045-5054. doi: 10.3969/j.issn.1000-6923.2020.11.047 LI X F, WU X D, SUN H Y, et al. Joint effects of antibiotics and silver nanoparticles on resistance of Escherichia coli [J]. China Environmental Science, 2020, 40(11): 5045-5054(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.11.047
[13] MCGRATH M, van PITTIUS N C G, van HELDEN P D, et al. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis [J]. Journal of Antimicrobial Chemotherapy, 2013, 69(2): 292-302. [14] MANNA M S, TAMER Y T, GASZEK I, et al. A trimethoprim derivative impedes antibiotic resistance evolution [J]. Nature Communications, 2021, 12: 2949. doi: 10.1038/s41467-021-23191-z [15] LU J, WANG Y, LI J, et al. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera [J]. Environment International, 2018, 121: 1217-1226. doi: 10.1016/j.envint.2018.10.040 [16] ZHANG Y, GU A Z, XIE S S, et al. Nano-metal oxides induce antimicrobial resistance via radical-mediated mutagenesis [J]. Environment International, 2018, 121: 1162-1171. doi: 10.1016/j.envint.2018.10.030 [17] 刘树深, 刘玲, 陈浮. 浓度加和模型在化学混合物毒性评估中的应用 [J]. 化学学报, 2013, 71(10): 1335-1340. doi: 10.6023/A13040355 LIU S S, LIU L, CHEN F. Application of the concentration addition model in the assessment of chemical mixture toxicity [J]. Acta Chimica Sinica, 2013, 71(10): 1335-1340(in Chinese). doi: 10.6023/A13040355
[18] ESCHER B, BRAUN G, ZARFL C. Exploring the concepts of concentration addition and independent action using a linear low-effect mixture model [J]. Environmental Toxicology and Chemistry, 2020, 39(12): 2552-2559. doi: 10.1002/etc.4868 [19] KOTHARY V, SCHERL E J, BOSWORTH B, et al. Rifaximin resistance in Escherichia coli associated with inflammatory bowel disease correlates with prior rifaximin use, mutations in rpoB, and activity of Phe-Arg-β-naphthylamide-inhibitable efflux pumps [J]. Antimicrobial Agents and Chemotherapy, 2013, 57(2): 811-817. doi: 10.1128/AAC.02163-12 [20] NING Q, WANG D L, YOU J. Joint effects of antibiotics and quorum sensing inhibitors on resistance development in bacteria [J]. Environmental Science. Processes & Impacts, 2021, 23(7): 995-1005. [21] NING Q, WANG D L, CHENG F, et al. Predicting rifampicin resistance mutations in bacterial RNA polymerase subunit beta based on majority consensus [J]. BMC Bioinformatics, 2021, 22(1): 210. doi: 10.1186/s12859-021-04137-0 [22] NING Q, WANG D L, AN J H, et al. Combined effects of nanosized polystyrene and erythromycin on bacterial growth and resistance mutations in Escherichia coli [J]. Journal of Hazardous Materials, 2022, 422: 126858. doi: 10.1016/j.jhazmat.2021.126858 [23] CHOI O, DENG K K, KIM N J, et al. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth [J]. Water Research, 2008, 42(12): 3066-3074. doi: 10.1016/j.watres.2008.02.021 [24] 张岩, 盛多红. 细菌DNA损伤诱导反应(SOS反应)在控制细菌耐药性中的作用 [J]. 微生物前沿, 2013(2): 83-89. ZHANG Y, SHENG D H. Role of DNA damage response (SOS response) on the control of bacterial resistance [J]. Advance in Microbiol, 2013(2): 83-89(in Chinese).
[25] GALHARDO R S, HASTINGS P J, ROSENBERG S M. Mutation as a stress response and the regulation of evolvability [J]. Critical Reviews in Biochemistry and Molecular Biology, 2007, 42(5): 399-435. doi: 10.1080/10409230701648502 [26] MO C Y, MANNING S A, ROGGIANI M, et al. Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics [J]. mSphere, 2016, 1(4): e00163-e00116. [27] LU J, JIN M, NGUYEN S H, et al. Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation [J]. Environment International, 2018, 118: 257-265. doi: 10.1016/j.envint.2018.06.004 [28] LI X Y, GU A Z, ZHANG Y, et al. Sub-lethal concentrations of heavy metals induce antibiotic resistance via mutagenesis [J]. Journal of Hazardous Materials, 2019, 369: 9-16. doi: 10.1016/j.jhazmat.2019.02.006 [29] LI D, GU A Z. Antimicrobial resistance: A new threat from disinfection byproducts and disinfection of drinking water? [J]. Current Opinion in Environmental Science & Health, 2019, 7: 83-91.