[1] |
WANG H X, WANG N, WANG B, et al. Antibiotics in drinking water in Shanghai and their contribution to antibiotic exposure of school children [J]. Environmental Science & Technology, 2016, 50(5): 2692-2699.
|
[2] |
DU B Y, WEN F, GUO X D, et al. Evaluation of an ELISA-based visualization microarray chip technique for the detection of veterinary antibiotics in milk [J]. Food Control, 2019, 106: 106713. doi: 10.1016/j.foodcont.2019.106713
|
[3] |
LYU J, YANG L S, ZHANG L, et al. Antibiotics in soil and water in China-a systematic review and source analysis [J]. Environmental Pollution, 2020, 266: 115147. doi: 10.1016/j.envpol.2020.115147
|
[4] |
RIZZELLO L, POMPA P P. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines [J]. Chemical Society Reviews, 2014, 43(5): 1501-1518. doi: 10.1039/C3CS60218D
|
[5] |
吴宗山, 胡海洋, 任艺, 等. 纳米银的抗菌机理研究进展 [J]. 化工进展, 2015, 34(5): 1349-1356,1370. doi: 10.16085/j.issn.1000-6613.2015.05.028
WU Z S, HU H Y, REN Y, et al. Progress of antibacterial mechanisms of silver nanoparticles [J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1349-1356,1370(in Chinese). doi: 10.16085/j.issn.1000-6613.2015.05.028
|
[6] |
唐诗璟, 郑雄, 陈银广. 水体环境中纳米银的来源、迁移转化及毒性效应的研究进展 [J]. 化工进展, 2013, 32(11): 2727-2733.
TANG S J, ZHENG X, CHEN Y G. Research progresses in aquatic environmental silver nanoparticles: Sources, transformation and toxicity [J]. Chemical Industry and Engineering Progress, 2013, 32(11): 2727-2733(in Chinese).
|
[7] |
MCGILLICUDDY E, MURRAY I, KAVANAGH S, et al. Silver nanoparticles in the environment: Sources, detection and ecotoxicology [J]. Science of the Total Environment, 2017, 575: 231-246. doi: 10.1016/j.scitotenv.2016.10.041
|
[8] |
HUANG W D, WANG J, WANG Z X, et al. Synergistic antimicrobial activity of silver nanoparticles combined with streptomycin sulfate against gram-negative and gram-positive bacteria [J]. Molecular Crystals and Liquid Crystals, 2021, 714(1): 80-88. doi: 10.1080/15421406.2020.1856610
|
[9] |
王孟珍, 孙昊宇, 龙茜, 等. 纳米银复合材料与抗生素的联合抗菌性能及相关机制研究 [J]. 生态毒理学报, 2020, 15(2): 39-49. doi: 10.7524/AJE.1673-5897.20191204001
WANG M Z, SUN H Y, LONG X, et al. Combined antibacterial property and mechanism of nanosilver composites and antibiotics against bacteria [J]. Asian Journal of Ecotoxicology, 2020, 15(2): 39-49(in Chinese). doi: 10.7524/AJE.1673-5897.20191204001
|
[10] |
卢文强, 孙昊宇, 王雅娟, 等. 抗生素的胁迫与抗生素抗性基因产生与传播关系的研究 [J]. 生态毒理学报, 2020, 15(4): 129-138.
LU W Q, SUN H Y, WANG Y J, et al. The relationship of antibiotic stress with emergence and dissemination of antibiotic resistance genes [J]. Asian Journal of Ecotoxicology, 2020, 15(4): 129-138(in Chinese).
|
[11] |
赖晓琳, 吴平霄, 阮博. 四环素对大肠杆菌抗生素抗性基因进化的影响 [J]. 环境科学学报, 2019, 39(8): 2475-2482.
LAI X L, WU P X, RUAN B. Evolution of antibiotic resistance genes in E. coli by tetracycline [J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2475-2482(in Chinese).
|
[12] |
李旭飞, 巫晓丹, 孙昊宇, 等. 抗生素和纳米银对大肠杆菌耐药性的联合效应 [J]. 中国环境科学, 2020, 40(11): 5045-5054. doi: 10.3969/j.issn.1000-6923.2020.11.047
LI X F, WU X D, SUN H Y, et al. Joint effects of antibiotics and silver nanoparticles on resistance of Escherichia coli [J]. China Environmental Science, 2020, 40(11): 5045-5054(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.11.047
|
[13] |
MCGRATH M, van PITTIUS N C G, van HELDEN P D, et al. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis [J]. Journal of Antimicrobial Chemotherapy, 2013, 69(2): 292-302.
|
[14] |
MANNA M S, TAMER Y T, GASZEK I, et al. A trimethoprim derivative impedes antibiotic resistance evolution [J]. Nature Communications, 2021, 12: 2949. doi: 10.1038/s41467-021-23191-z
|
[15] |
LU J, WANG Y, LI J, et al. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera [J]. Environment International, 2018, 121: 1217-1226. doi: 10.1016/j.envint.2018.10.040
|
[16] |
ZHANG Y, GU A Z, XIE S S, et al. Nano-metal oxides induce antimicrobial resistance via radical-mediated mutagenesis [J]. Environment International, 2018, 121: 1162-1171. doi: 10.1016/j.envint.2018.10.030
|
[17] |
刘树深, 刘玲, 陈浮. 浓度加和模型在化学混合物毒性评估中的应用 [J]. 化学学报, 2013, 71(10): 1335-1340. doi: 10.6023/A13040355
LIU S S, LIU L, CHEN F. Application of the concentration addition model in the assessment of chemical mixture toxicity [J]. Acta Chimica Sinica, 2013, 71(10): 1335-1340(in Chinese). doi: 10.6023/A13040355
|
[18] |
ESCHER B, BRAUN G, ZARFL C. Exploring the concepts of concentration addition and independent action using a linear low-effect mixture model [J]. Environmental Toxicology and Chemistry, 2020, 39(12): 2552-2559. doi: 10.1002/etc.4868
|
[19] |
KOTHARY V, SCHERL E J, BOSWORTH B, et al. Rifaximin resistance in Escherichia coli associated with inflammatory bowel disease correlates with prior rifaximin use, mutations in rpoB, and activity of Phe-Arg-β-naphthylamide-inhibitable efflux pumps [J]. Antimicrobial Agents and Chemotherapy, 2013, 57(2): 811-817. doi: 10.1128/AAC.02163-12
|
[20] |
NING Q, WANG D L, YOU J. Joint effects of antibiotics and quorum sensing inhibitors on resistance development in bacteria [J]. Environmental Science. Processes & Impacts, 2021, 23(7): 995-1005.
|
[21] |
NING Q, WANG D L, CHENG F, et al. Predicting rifampicin resistance mutations in bacterial RNA polymerase subunit beta based on majority consensus [J]. BMC Bioinformatics, 2021, 22(1): 210. doi: 10.1186/s12859-021-04137-0
|
[22] |
NING Q, WANG D L, AN J H, et al. Combined effects of nanosized polystyrene and erythromycin on bacterial growth and resistance mutations in Escherichia coli [J]. Journal of Hazardous Materials, 2022, 422: 126858. doi: 10.1016/j.jhazmat.2021.126858
|
[23] |
CHOI O, DENG K K, KIM N J, et al. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth [J]. Water Research, 2008, 42(12): 3066-3074. doi: 10.1016/j.watres.2008.02.021
|
[24] |
张岩, 盛多红. 细菌DNA损伤诱导反应(SOS反应)在控制细菌耐药性中的作用 [J]. 微生物前沿, 2013(2): 83-89.
ZHANG Y, SHENG D H. Role of DNA damage response (SOS response) on the control of bacterial resistance [J]. Advance in Microbiol, 2013(2): 83-89(in Chinese).
|
[25] |
GALHARDO R S, HASTINGS P J, ROSENBERG S M. Mutation as a stress response and the regulation of evolvability [J]. Critical Reviews in Biochemistry and Molecular Biology, 2007, 42(5): 399-435. doi: 10.1080/10409230701648502
|
[26] |
MO C Y, MANNING S A, ROGGIANI M, et al. Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics [J]. mSphere, 2016, 1(4): e00163-e00116.
|
[27] |
LU J, JIN M, NGUYEN S H, et al. Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation [J]. Environment International, 2018, 118: 257-265. doi: 10.1016/j.envint.2018.06.004
|
[28] |
LI X Y, GU A Z, ZHANG Y, et al. Sub-lethal concentrations of heavy metals induce antibiotic resistance via mutagenesis [J]. Journal of Hazardous Materials, 2019, 369: 9-16. doi: 10.1016/j.jhazmat.2019.02.006
|
[29] |
LI D, GU A Z. Antimicrobial resistance: A new threat from disinfection byproducts and disinfection of drinking water? [J]. Current Opinion in Environmental Science & Health, 2019, 7: 83-91.
|