石油烃污染土壤中蚯蚓对PAHs富集研究

黄盼盼, 陶宗鑫, 王佳佳, 徐晶, 欧阳少虎. 石油烃污染土壤中蚯蚓对PAHs富集研究[J]. 生态毒理学报, 2022, 17(4): 471-481. doi: 10.7524/AJE.1673-5897.20220120001
引用本文: 黄盼盼, 陶宗鑫, 王佳佳, 徐晶, 欧阳少虎. 石油烃污染土壤中蚯蚓对PAHs富集研究[J]. 生态毒理学报, 2022, 17(4): 471-481. doi: 10.7524/AJE.1673-5897.20220120001
Huang Panpan, Tao Zongxin, Wang Jiajia, Xu Jing, Ouyang Shaohu. Enrichment of PAHs by Earthworms in Petroleum Hydrocarbon Contaminated Soil[J]. Asian journal of ecotoxicology, 2022, 17(4): 471-481. doi: 10.7524/AJE.1673-5897.20220120001
Citation: Huang Panpan, Tao Zongxin, Wang Jiajia, Xu Jing, Ouyang Shaohu. Enrichment of PAHs by Earthworms in Petroleum Hydrocarbon Contaminated Soil[J]. Asian journal of ecotoxicology, 2022, 17(4): 471-481. doi: 10.7524/AJE.1673-5897.20220120001

石油烃污染土壤中蚯蚓对PAHs富集研究

    作者简介: 黄盼盼(1986—),女,硕士,研究方向为生态毒理学,E-mail:huangpanpan0546@163.com
    通讯作者: 欧阳少虎, E-mail: ouyangshaohu@nankai.edu.cn
  • 基金项目:

    国家重点研发计划资助项目(2019YFC1804104);NSFC山东联合基金资助项目(U1906222);博士后面上项目(2020M680867);“国家级大学生创新创业训练计划”创新训练项目(202110055079);高等学校学科创新引智计划资助项目(T2017002)

  • 中图分类号: X171.5

Enrichment of PAHs by Earthworms in Petroleum Hydrocarbon Contaminated Soil

    Corresponding author: Ouyang Shaohu, ouyangshaohu@nankai.edu.cn
  • Fund Project:
  • 摘要: 为探究石油烃污染胁迫下土壤生物对多环芳烃(PAHs)的富集作用,以赤子爱胜蚓(Eisenia foetida)为受试生物,分别暴露于不同浓度(0~20 g·kg-1)石油烃7、14、21和28 d,测定蚯蚓体内总PAHs及各环PAHs的生物富集量和生物富集系数(BCF),评价了石油污染土壤对蚯蚓的PAHs富集特征的影响。结果表明,与无石油烃暴露对照组相比,蚯蚓对总PAHs及各环PAHs的富集量均显著(P<0.05)增长,且随石油烃染毒浓度和暴露时间增加而提高,表现出很强的富集效应。在同一浓度石油烃污染暴露下,蚯蚓对PAHs 2环、3环和4环富集量显著(P<0.05)大于5环和6环富集量,并且石油烃浓度越大,这种选择性富集特征越明显。而且,随着石油烃染毒浓度的增加,蚯蚓对总PAHs及各环PAHs的BCF呈现先增大后减小趋势。以上结果说明,蚯蚓对PAHs的生物富集量与BCF之间没有特别明显的相关关系。本研究结果为评估石油烃及PAHs污染对土壤生物生态健康风险提供了基础数据和参考依据。
  • 加载中
  • Ossai I C, Ahmed A, Hassan A, et al. Remediation of soil and water contaminated with petroleum hydrocarbon:A review[J]. Environmental Technology & Innovation, 2020, 17:100526
    Kong L L, Gao Y Y, Zhou Q X, et al. Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy[J]. Journal of Hazardous Materials, 2018, 343:276-284
    黄盼盼, 周启星. 石油污染土壤对蚯蚓的致死效应及回避行为的影响[J]. 生态毒理学报, 2012, 7(3):312-316

    Huang P P, Zhou Q X. Effects of petroleum-contaminated soil on lethality and avoidance behavior of the earthworm Eisenia foetida[J]. Asian Journal of Ecotoxicology, 2012, 7(3):312-316(in Chinese)

    Avci A, Kaçmaz M, Durak İ. Peroxidation in muscle and liver tissues from fish in a contaminated river due to a petroleum refinery industry[J]. Ecotoxicology and Environmental Safety, 2005, 60(1):101-105
    李香, 魏海峰, 刘长发, 等. 2种烷基多环芳烃对仿刺参CYP450和p53基因表达的影响研究[J]. 生态毒理学报, 2019, 14(1):83-89

    Li X, Wei H F, Liu C F, et al. Effects of 2 kinds of alkyl-PAHs on the expression of CYP450 and p53 genes of Apostichopus japonicus[J]. Asian Journal of Ecotoxicology, 2019, 14(1):83-89(in Chinese)

    周启星. 生态毒理学[M]. 北京:科学出版社, 2004:9-100
    Czarny J, Staninska-Pięta J, Piotrowska-Cyplik A, et al. Acinetobacter sp. as the key player in diesel oil degrading community exposed to PAHs and heavy metals[J]. Journal of Hazardous Materials, 2020, 383:121168
    冉宗信, 陈靖宇, 王亚婷, 等. 典型工业区土壤多环芳烃污染特征及影响因素[J]. 环境科学, 2019, 40(10):4594-4603

    Ran Z X, Chen J Y, Wang Y T, et al. Characteristics and influencing factors of polycyclic aromatic hydrocarbons in surface soils from typical industrial areas of Chengdu[J]. Environmental Science, 2019, 40(10):4594-4603(in Chinese)

    Yang W X, Hadibarata T, Mahmoud A H, et al. Biotransformation of pyrene in soil in the presence of earthworm Eisenia fetida[J]. Environmental Technology & Innovation, 2020, 18:100701
    Zhou Q X, Cheng Y, Zhang Q R, et al. Quantitative analyses of relationships between ecotoxicological effects and combined pollution[J]. Science in China Series C, Life Sciences, 2004, 47(4):332-339
    Shi Z M, Wang C Y, Zhao Y H. Effects of surfactants on the fractionation, vermiaccumulation, and removal of fluoranthene by earthworms in soil[J]. Chemosphere, 2020, 250:126332
    Li Y B, Wang X, Sun Z J. Ecotoxicological effects of petroleum-contaminated soil on the earthworm Eisenia fetida[J]. Journal of Hazardous Materials, 2020, 393:122384
    Liu L N, Song Z L, Li Q, et al. Accumulation and partitioning of toxic trace metal(loid)s in phytoliths of wheat grown in a multi-element contaminated soil[J]. Environmental Pollution, 2022, 294:118645
    Noh J, Kim H, Lee C, et al. Bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) by the marine clam, Mactra veneriformis, chronically exposed to oil-suspended particulate matter aggregates[J]. Environmental Science & Technology, 2018, 52(14):7910-7920
    Sørensen L, Hansen B H, Farkas J, et al. Accumulation and toxicity of monoaromatic petroleum hydrocarbons in early life stages of cod and haddock[J]. Environmental Pollution, 2019, 251:212-220
    Zhao H, Zhao X, Xue S, et al. Bioaccumulation and transformation of petroleum hydrocarbon in Perinereis aibuhitensis exposed to crude oil[J]. Fresenius Environmental Bulletin, 2018, 27(12A):9091-9102
    Teng Y, Zhou Q X. Bioavailability and toxicity variation of benzo(a)pyrene in three soil-wheat systems:Indicators of soil quality[J]. Land Degradation & Development, 2021, 32(14):3847-3855
    Cheng L J, Zhou Q X, Yu B B. Responses and roles of roots, microbes, and degrading genes in rhizosphere during phytoremediation of petroleum hydrocarbons contaminated soil[J]. International Journal of Phytoremediation, 2019, 21(12):1161-1169
    Jiang X F, Chang Y Q, Zhang T, et al. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida)[J]. Environmental Pollution, 2020, 259:113896
    Pandey S K, Kim K H, Brown R J C. A review of techniques for the determination of polycyclic aromatic hydrocarbons in air[J]. TrAC Trends in Analytical Chemistry, 2011, 30(11):1716-1739
    Maliszewska-Kordybach B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland:Preliminary proposals for criteria to evaluate the level of soil contamination[J]. Applied Geochemistry, 1996, 11(1-2):121-127
    华德武, 汪青, 徐红, 等. 芜湖市交通区表层土壤多环芳烃与黑碳研究[J]. 中国环境科学, 2018, 38(6):2253-2263

    Hua D W, Wang Q, Xu H, et al. Polycyclic aromatic hydrocarbons and black carbon in surface soil from traffic areas in Wuhu, China[J]. China Environmental Science, 2018, 38(6):2253-2263(in Chinese)

    Zavgorodnyaya Y A, Chikidova A L, Biryukov M V, et al. Polycyclic aromatic hydrocarbons in atmospheric particulate depositions and urban soils of Moscow, Russia[J]. Journal of Soils and Sediments, 2019, 19(8):3155-3165
    Mizwar A, Priatmadi B J, Abdi C, et al. Assessment of polycyclic aromatic hydrocarbons (PAHs) contamination in surface soil of coal stockpile sites in South Kalimantan, Indonesia[J]. Environmental Monitoring and Assessment, 2016, 188(3):152
    Ouyang Z Z, Gao L M, Yang C. Distribution, sources and influence factors of polycyclic aromatic hydrocarbon at different depths of the soil and sediments of two typical coal mining subsidence areas in Huainan, China[J]. Ecotoxicology and Environmental Safety, 2018, 163:255-265
    Wang D, Zhu S L, Wang L J, et al. Distribution, origins and hazardous effects of polycyclic aromatic hydrocarbons in topsoil surrounding oil fields:A case study on the loess plateau, China[J]. International Journal of Environmental Research and Public Health, 2020, 17(4):1390
    Chen Y N, Zhang J Q, Zhang F, et al. Polycyclic aromatic hydrocarbons in farmland soils around main reservoirs of Jilin Province, China:Occurrence, sources and potential human health risk[J]. Environmental Geochemistry and Health, 2018, 40(2):791-802
    Jonker M T O, Van der Heijden S A, Kreitinger J P, et al. Predicting PAH bioaccumulation and toxicity in earthworms exposed to manufactured gas plant soils with solid-phase microextraction[J]. Environmental Science & Technology, 2007, 41(21):7472-7478
    Eijsackers H, Van Gestel C A, De Jonge S, et al. Polycyclic aromatic hydrocarbon-polluted dredged peat sediments and earthworms:A mutual interference[J]. Ecotoxicology, 2001, 10(1):35-50
    Ma L L, Zhang J, Han L S, et al. The effects of aging time on the fraction distribution and bioavailability of PAH[J]. Chemosphere, 2012, 86(10):1072-1078
    Zhang J D, Li Y N, Liu C Y, et al. Concentration levels, biological enrichment capacities and potential health risk assessment of trace elements in Eichhornia crassipes from Honghu Lake, China[J]. Scientific Reports, 2019, 9:2431
    Su D, Li P J, Wang X, et al. Biodegradation of benzo[a] pyrene in soil by immobilized fungus[J]. Environmental Engineering Science, 2008, 25(8):1181-1188
    张亚楠, 杨兴伦, 卞永荣, 等. 化学提取法表征污染土壤中PAHs老化规律和蚯蚓富集特征[J]. 环境科学, 2015, 36(12):4582-4590

    Zhang Y N, Yang X L,Bian Y R, et al. Aging law of PAHs in contaminated soil and their enrichment in earthworms characterized by chemical extraction techniques[J]. Environmental Science, 2015, 36(12):4582-4590(in Chinese)

    Cuypers C, Pancras T, Grotenhuis T, et al. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques[J]. Chemosphere, 2002, 46(8):1235-1245
    Zhou Q X, Hu X G. Systemic stress and recovery patterns of rice roots in response to graphene oxide nanosheets[J]. Environmental Science & Technology, 2017, 51(4):2022-2030
    Šmídová K, Hofman J. Uptake kinetics of five hydrophobic organic pollutants in the earthworm Eisenia fetida in six different soils[J]. Journal of Hazardous Materials, 2014, 267:175-182
    吴尔苗, 王军良, 赵士良, 等. 菲和芘单一及复合污染对蚯蚓抗氧化酶活性和丙二醛含量的影响[J]. 环境科学学报, 2011, 31(5):1077-1085

    Wu E M, Wang J L, Zhao S L, et al. Effect of single and combined pollution of Phe, Pyr on SOD, CAT activities and MDA content of Eisenia foetida in soils[J]. Acta Scientiae Circumstantiae, 2011, 31(5):1077-1085(in Chinese)

  • 加载中
计量
  • 文章访问数:  2063
  • HTML全文浏览数:  2063
  • PDF下载数:  58
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-01-20
黄盼盼, 陶宗鑫, 王佳佳, 徐晶, 欧阳少虎. 石油烃污染土壤中蚯蚓对PAHs富集研究[J]. 生态毒理学报, 2022, 17(4): 471-481. doi: 10.7524/AJE.1673-5897.20220120001
引用本文: 黄盼盼, 陶宗鑫, 王佳佳, 徐晶, 欧阳少虎. 石油烃污染土壤中蚯蚓对PAHs富集研究[J]. 生态毒理学报, 2022, 17(4): 471-481. doi: 10.7524/AJE.1673-5897.20220120001
Huang Panpan, Tao Zongxin, Wang Jiajia, Xu Jing, Ouyang Shaohu. Enrichment of PAHs by Earthworms in Petroleum Hydrocarbon Contaminated Soil[J]. Asian journal of ecotoxicology, 2022, 17(4): 471-481. doi: 10.7524/AJE.1673-5897.20220120001
Citation: Huang Panpan, Tao Zongxin, Wang Jiajia, Xu Jing, Ouyang Shaohu. Enrichment of PAHs by Earthworms in Petroleum Hydrocarbon Contaminated Soil[J]. Asian journal of ecotoxicology, 2022, 17(4): 471-481. doi: 10.7524/AJE.1673-5897.20220120001

石油烃污染土壤中蚯蚓对PAHs富集研究

    通讯作者: 欧阳少虎, E-mail: ouyangshaohu@nankai.edu.cn
    作者简介: 黄盼盼(1986—),女,硕士,研究方向为生态毒理学,E-mail:huangpanpan0546@163.com
  • 1. 东营市生态环境局, 东营 257000;
  • 2. 南开大学环境科学与工程学院, 环境污染过程与基准教育部重点实验室, 天津 300071
基金项目:

国家重点研发计划资助项目(2019YFC1804104);NSFC山东联合基金资助项目(U1906222);博士后面上项目(2020M680867);“国家级大学生创新创业训练计划”创新训练项目(202110055079);高等学校学科创新引智计划资助项目(T2017002)

摘要: 为探究石油烃污染胁迫下土壤生物对多环芳烃(PAHs)的富集作用,以赤子爱胜蚓(Eisenia foetida)为受试生物,分别暴露于不同浓度(0~20 g·kg-1)石油烃7、14、21和28 d,测定蚯蚓体内总PAHs及各环PAHs的生物富集量和生物富集系数(BCF),评价了石油污染土壤对蚯蚓的PAHs富集特征的影响。结果表明,与无石油烃暴露对照组相比,蚯蚓对总PAHs及各环PAHs的富集量均显著(P<0.05)增长,且随石油烃染毒浓度和暴露时间增加而提高,表现出很强的富集效应。在同一浓度石油烃污染暴露下,蚯蚓对PAHs 2环、3环和4环富集量显著(P<0.05)大于5环和6环富集量,并且石油烃浓度越大,这种选择性富集特征越明显。而且,随着石油烃染毒浓度的增加,蚯蚓对总PAHs及各环PAHs的BCF呈现先增大后减小趋势。以上结果说明,蚯蚓对PAHs的生物富集量与BCF之间没有特别明显的相关关系。本研究结果为评估石油烃及PAHs污染对土壤生物生态健康风险提供了基础数据和参考依据。

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回