氯氰菊酯和马拉硫磷对斑马鱼下丘脑-垂体-性腺轴基因的雌激素联合效应

郭东梅, 邱静, 钱永忠, 徐丽红, 徐明. 氯氰菊酯和马拉硫磷对斑马鱼下丘脑-垂体-性腺轴基因的雌激素联合效应[J]. 生态毒理学报, 2022, 17(4): 482-488. doi: 10.7524/AJE.1673-5897.20210511001
引用本文: 郭东梅, 邱静, 钱永忠, 徐丽红, 徐明. 氯氰菊酯和马拉硫磷对斑马鱼下丘脑-垂体-性腺轴基因的雌激素联合效应[J]. 生态毒理学报, 2022, 17(4): 482-488. doi: 10.7524/AJE.1673-5897.20210511001
Guo Dongmei, Qiu Jing, Qian Yongzhong, Xu Lihong, Xu Ming. Combined Estrogen Effects of Cypermethrin and Malathion on Hypothalamic-pituitary-gonad Axis Gene in Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(4): 482-488. doi: 10.7524/AJE.1673-5897.20210511001
Citation: Guo Dongmei, Qiu Jing, Qian Yongzhong, Xu Lihong, Xu Ming. Combined Estrogen Effects of Cypermethrin and Malathion on Hypothalamic-pituitary-gonad Axis Gene in Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(4): 482-488. doi: 10.7524/AJE.1673-5897.20210511001

氯氰菊酯和马拉硫磷对斑马鱼下丘脑-垂体-性腺轴基因的雌激素联合效应

    作者简介: 郭东梅(1978-),女,高级农艺师,研究方向为农药残留和毒理学,E-mail:gdm100200@163.com
    通讯作者: 徐丽红, E-mail: xlh3888@163.com 徐明, E-mail: xumingbest@126.com
  • 中图分类号: X171.5

Combined Estrogen Effects of Cypermethrin and Malathion on Hypothalamic-pituitary-gonad Axis Gene in Zebrafish

    Corresponding authors: Xu Lihong, xlh3888@163.com ;  Xu Ming, xumingbest@126.com
  • 摘要: 水生生物体经常暴露于混合污染物中,并能引起生物体内分泌干扰效应。氯氰菊酯和马拉硫磷是被广泛使用的农药,其残留物在水环境中被频繁检出。本研究主要采用分子生物学手段研究了氯氰菊酯和马拉硫磷2种农药及其混合物对斑马鱼胚胎的急性联合毒性和雌激素内分泌干扰联合效应。急性毒性研究表明,氯氰菊酯和对马拉硫磷对斑马鱼仔鱼分别属于高等和低等毒性。亚致死剂量暴露研究表明,农药氯氰菊酯和马拉硫磷的二元联合暴露组(4 μg·L-1氯氰菊酯+1 000 μg·L-1马拉硫磷)对斑马鱼胚胎处理10 d,能显著改变斑马鱼体内的下丘脑-垂体-性腺轴VTG1雌激素相关基因,二元联合暴露组能显著增加雌激素内分泌干扰效应。
  • 加载中
  • Altenburger R, Backhaus T, Boedeker W, et al. Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri:Mixtures composed of similarly acting chemicals[J]. Environmental Toxicology and Chemistry, 2000, 19(9):2341-2437
    Aydın R, Köprücü K, Dörücü M, et al. Acute toxicity of synthetic pyrethroid cypermethrin on the common carp (Cyprinus carpio L.) embryos and larvae[J]. Aquaculture International, 2005, 13(5):451-458
    Backhaus T, Altenburger R, Boedeker W, et al. Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri[J]. Environmental Toxicology and Chemistry, 2000, 19(9):2348
    Barata C, Baird D J, Nogueira A J, et al. Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment[J]. Aquatic Toxicology, 2006, 78(1):1-14
    Bradbury S P, Coats J R. Comparative Toxicology of the Pyrethroid Insecticides[M]//Reviews of Environmental Contamination and Toxicology. New York, NY:Springer New York, 1989:133-177
    Hawkins M B, Thornton J W, Crews D, et al. Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(20):10751-10756
    Jiang J H, Wu S G, Liu X J, et al. Effect of acetochlor on transcription of genes associated with oxidative stress, apoptosis, immunotoxicity and endocrine disruption in the early life stage of zebrafish[J]. Environmental Toxicology and Pharmacology, 2015, 40(2):516-523
    Karmakar S, Patra K, Jana S, et al. Exposure to environmentally relevant concentrations of malathion induces significant cellular, biochemical and histological alterations in Labeo rohita[J]. Pesticide Biochemistry and Physiology, 2016, 126:49-57
    Kojima H, Katsura E, Takeuchi S, et al. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells[J]. Environmental Health Perspectives, 2004, 112(5):524-531
    Kjeldsen L S, Ghisari M, Bonefeld-Jørgensen E C. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity[J]. Toxicology and Applied Pharmacology, 2013, 272(2):453-464
    Laabs V, Amelung W, Pinto A A, et al. Pesticides in surface water, sediment, and rainfall of the northeastern Pantanal Basin, Brazil[J]. Journal of Environmental Quality, 2002, 31(5):1636-1648
    Marino D, Ronco A. Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina[J]. Bulletin of Environmental Contamination and Toxicology, 2005, 75(4):820-826
    Runnalls T J, Beresford N, Kugathas S, et al. From single chemicals to mixtures:Reproductive effects of levonorgestrel and ethinylestradiol on the fathead minnow[J]. Aquatic Toxicology, 2015, 169:152-167
    Segner H. Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2009, 149(2):187-195
    Shahsavari A A, Khodaei K, Asadian F, et al. Groundwater pesticides residue in the southwest of Iran-Shushtar plain[J]. Environmental Earth Sciences, 2012, 65(1):231-239
    Suzuki S, Hoa P T P. Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and antibiotic resistance in Indochina[J]. Frontiers in Microbiology, 2012, 3:67
    Sawyer S J, Gerstner K A, Callard G V. Real-time PCR analysis of cytochrome P450 aromatase expression in zebrafish:Gene specific tissue distribution, sex differences, developmental programming, and estrogen regulation[J]. General and Comparative Endocrinology, 2006, 147(2):108-117
    Simpson E R, Clyne C, Rubin G, et al. Aromatase:A brief overview[J]. Annual Review of Physiology, 2002, 64:93-127
    Sumpter J P, Jobling S. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment[J]. Environmental Health Perspectives, 1995, 103(Suppl.7):173-178
    Taylor P, Radic Z, Hosea N A, et al. Structural bases for the specificity of cholinesterase catalysis and inhibition[J]. Toxicology Letters, 1995, 82-83:453-458
    Viran R, Unlu E F, Polat H, et al. Investigation of acute toxicity of deltamethrin on guppies (Poecilia reticulata)[J]. Ecotoxicology and Environmental Safety, 2003, 55:82-85
    Wang Y H, Cang T, Yu R X, et al. Joint acute toxicity of the herbicide butachlor and three insecticides to the terrestrial earthworm,Eisenia fetida[J]. Environmental Science and Pollution Research International, 2016, 23(12):11766-11776
  • 加载中
计量
  • 文章访问数:  1237
  • HTML全文浏览数:  1237
  • PDF下载数:  45
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-05-11
郭东梅, 邱静, 钱永忠, 徐丽红, 徐明. 氯氰菊酯和马拉硫磷对斑马鱼下丘脑-垂体-性腺轴基因的雌激素联合效应[J]. 生态毒理学报, 2022, 17(4): 482-488. doi: 10.7524/AJE.1673-5897.20210511001
引用本文: 郭东梅, 邱静, 钱永忠, 徐丽红, 徐明. 氯氰菊酯和马拉硫磷对斑马鱼下丘脑-垂体-性腺轴基因的雌激素联合效应[J]. 生态毒理学报, 2022, 17(4): 482-488. doi: 10.7524/AJE.1673-5897.20210511001
Guo Dongmei, Qiu Jing, Qian Yongzhong, Xu Lihong, Xu Ming. Combined Estrogen Effects of Cypermethrin and Malathion on Hypothalamic-pituitary-gonad Axis Gene in Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(4): 482-488. doi: 10.7524/AJE.1673-5897.20210511001
Citation: Guo Dongmei, Qiu Jing, Qian Yongzhong, Xu Lihong, Xu Ming. Combined Estrogen Effects of Cypermethrin and Malathion on Hypothalamic-pituitary-gonad Axis Gene in Zebrafish[J]. Asian journal of ecotoxicology, 2022, 17(4): 482-488. doi: 10.7524/AJE.1673-5897.20210511001

氯氰菊酯和马拉硫磷对斑马鱼下丘脑-垂体-性腺轴基因的雌激素联合效应

    通讯作者: 徐丽红, E-mail: xlh3888@163.com ;  徐明, E-mail: xumingbest@126.com
    作者简介: 郭东梅(1978-),女,高级农艺师,研究方向为农药残留和毒理学,E-mail:gdm100200@163.com
  • 1. 浙江省农业科学院农产品质量与标准研究所, 杭州 310021;
  • 2. 中国农业科学院农业质量标准与检测技术研究所, 北京 100081;
  • 3. 北京市化工职业病防治院, 北京 100093

摘要: 水生生物体经常暴露于混合污染物中,并能引起生物体内分泌干扰效应。氯氰菊酯和马拉硫磷是被广泛使用的农药,其残留物在水环境中被频繁检出。本研究主要采用分子生物学手段研究了氯氰菊酯和马拉硫磷2种农药及其混合物对斑马鱼胚胎的急性联合毒性和雌激素内分泌干扰联合效应。急性毒性研究表明,氯氰菊酯和对马拉硫磷对斑马鱼仔鱼分别属于高等和低等毒性。亚致死剂量暴露研究表明,农药氯氰菊酯和马拉硫磷的二元联合暴露组(4 μg·L-1氯氰菊酯+1 000 μg·L-1马拉硫磷)对斑马鱼胚胎处理10 d,能显著改变斑马鱼体内的下丘脑-垂体-性腺轴VTG1雌激素相关基因,二元联合暴露组能显著增加雌激素内分泌干扰效应。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回