-
随着社会经济的飞速发展和城市化进程的不断推进,湖泊富营养化问题尤为突出[1-2]。磷元素是导致湖泊富营养化的关键因子[3-4],去除湖泊中磷元素的主要形态-磷酸盐对于湖泊富营养化治理意义重大。目前常用的除磷技术有化学沉淀法[5]、生物处理法[6]和吸附法[7-8]。化学沉淀法是通过药剂与磷酸盐形成沉淀达到除磷的目的,除磷效果容易受到水体pH的影响且药剂费用较高;生物处理法容易受到水体中COD影响;吸附法是通过吸附、离子交换等过程将水体中的磷转移到固体材料中达到除磷功效,其工艺操作简单,处理效果较好。改性粘土[9-10]、改性生物炭[11-12]等在国内外除磷案例中应用较为广泛。天然膨润土是以蒙脱石为主要成分的粘土矿物,因其具有较大的比表面积和较强的吸附能力而被广泛用于废水处理[13]、土壤修复[14]等领域。
层状双金属氢氧化物(layered double hydroxides, LDHs)以其独特的结构和吸附性能被用于去除水中的含氧阴离子[15-17],其化学通式可表示为[M2+1-xM3+x(OH)2]x+(An-)x/n·mH2O,其中 M2+和M3+分别代表 LDHs 主体层板上的二价金属阳离子(Ca2+、Mg2+、Mn2+、Ni2+、Cu2+、Zn2+)和三价金属阳离子(Fe3+、Al3+、Mn3+、Ni3+、La3+),金属氢氧化物层板因部分二价金属离子被三价金属离子同晶置换而带正电荷,位于层间的阴离子An-则起到平衡电荷的作用。带正电荷的层板和层间阴离子的可交换性为LDHs应用于吸附磷酸根提供了有利条件。除此之外,可根据目标污染物的种类选择形成不同LDHs的金属阳离子组合[18],强化除磷效果。目前,国内外关于LDHs的研究逐渐由二元LDHs过渡到三元LDHs,三元LDHs具有比二元LDHs更优秀的物化性质和吸附性能。REZAK[19]用共沉淀法制备Zn-Al-Fe-LDHs,该吸附剂对P(Ⅴ)的最大吸附容量为140.85 mg·g−1,明显高于二元LDHs。但是,将粉末态的LDHs直接投加到湖泊中吸附水体污染物,水体会长时间浑浊,难以固液分离[20]。一些学者研究发现,Zn系LDHs的磷吸附能力最强[21-22],铝盐和镧盐对P(Ⅴ)有极强的亲和性使其经常被用于湖泊除磷[23-24]。笔者前期研究发现,镧很难用于制备二元LDHs,经尝试可以用于制备三元LDHs。因此,本研究制备了三元Zn-Al-La-LDHs,将其负载在吸附性能较好的膨润土表面用于水体锁磷,探究了Zn-Al-La-LDHs改性膨润土的除磷性能及其吸附机理,以期为湖泊富营养化的治理提供参考。
Zn-Al-La-LDHs改性膨润土对富营养化湖泊中磷的锁定效果
Locking effect of phosphorus in eutrophic lakes by bentonite/Zn-Al-La-LDHs
-
摘要: 采用恒定pH共沉淀法制备了Zn-Al-La-LDHs改性膨润土,通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)对样品微观形貌、元素组成、晶体结构进行了表征。结果表明:Zn-Al-La-LDHs已成功合成并负载于膨润土表面;Langmuir和Freundlich吸附模型均能很好地拟合Zn-Al-La-LDHs改性膨润土对磷酸根的吸附过程,吸附过程中同时存在单层吸附和多层吸附,最大吸附容量可达12 mg∙g−1。在富营养化程度较高的汤逊湖中心取5根带底泥和上覆水的样柱,进行了除磷药剂投加量实验。结果表明,根据上覆水溶解性磷酸盐(SRP)含量、表层8 cm底泥中活性磷(NaOH-P)含量、投药量安全系数(取10%)、改性膨润土吸附容量,可计算得到投药量;据前述计算结果投加所需的除磷药剂后,汤逊湖实验柱上覆水总磷(TP)质量浓度锁定在0.05 mg∙L−1以下,达到或优于地表水Ⅲ类水体有关总磷的水质要求(TP≤0.05 mg∙L−1)。以上结果说明所研制的Zn-Al-La-LDHs改性膨润土可用于富营养化水体的控磷。
-
关键词:
- 湖泊 /
- Zn-Al-La-LDHs /
- 改性膨润土 /
- 吸附剂 /
- 除磷
Abstract: Bentonite/Zn-Al-La-LDHs was prepared by constant pH coprecipitation method. The microstructure, elemental composition and crystal structure of the bentonite/Zn-Al-La-LDHs samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that Zn-Al-La-LDHs was successfully synthesized and loaded on the surface of bentonite. Langmuir and Freundlich models could well fit the isothermal adsorption process of bentonite/Zn-Al-La-LDHs toward phosphate, which contained the single-layer and multi-layer adsorption modes at the same time, and the maximum adsorption capacity was 12 mg∙g−1. Five sample columns with sediment and overlying water were taken from the center of Tangxun Lake with high eutrophication degree to test the dosage of phosphorus removal agent. The results showed that the dosage could be calculated according to the content of dissolved phosphate (SRP) in overlying water, the content of active phosphorus (NaOH-P) in 8 cm surface sediment, the dosage saftey coefficient of 10% and the adsorption capacity of modified bentonite. After the required phosphorus removal agent was added, the concentration of total phosphorus (TP) in the overlying water of Tangxun Lake test column was locked below 0.05 mg∙L−1, which met or exceeded the water quality requirements of TP content in class III water body of surface water (TP≤0.05 mg∙L−1). The bentonite/Zn-Al-La-LDHs can be used for phosphorus control in eutrophic water.-
Key words:
- lake /
- Zn-Al-La-LDHs /
- modified bentonite /
- adsorbent /
- phosphorus removal
-
表 1 等温吸附模型拟合参数
Table 1. Fitting parameters of adsorption isothermal model
吸附剂 Langmuir Freundlich qm/(mg·g−1) KL R2 1/n KF R2 Zn-Al-La-LDHs
改性膨润土12.00 1.55 0.997 8 0.13 7.17 0.992 6 表 2 20 d内5根汤逊湖实验柱的底泥释磷量
Table 2. Phosphorus release from sediment in five Tangxun Lake test columns within 20 days
实验
柱号TP/
(mg∙L−1)上覆水
TP/mg原上覆水
TP/mg吸附剂
吸附量/mg底泥释
磷量/mg1# 1.27 9.15 2.30 1.66 9.15 2# 0.94 6.78 2.30 15.17 19.65 3# 0.69 4.95 2.30 29.10 31.75 4# 0.66 4.75 2.30 42.61 45.06 5# 0.19 1.36 2.30 56.12 55.18 表 3 上覆水中TP浓度随时间变化的检测结果
Table 3. Test results of TP concentration in overlying water over time
mg∙L−1 实验
柱号不同时间下TP浓度 第1天 第2天 第4天 第6天 第8天 第12天 第16天 第20天 1# 0.29 0.26 0.56 0.86 1.16 1.29 1.31 1.27 2# 0.17 0.13 0.25 0.41 0.54 0.76 0.93 0.94 3# 0.14 0.13 0.37 0.46 0.49 0.58 0.68 0.69 4# 0.14 0.10 0.15 0.30 0.46 0.61 0.66 0.66 5# 0.14 0.10 0.26 0.24 0.25 0.21 0.22 0.19 表 4 二次投加量梯度设置及追加投药量
Table 4. Gradient setting of secondary dosage and additional dosage
实验柱号 投药量梯度/%m 总投药量/g 一次投药量/g 追加投药量/g 1# 50 3.03 0.14 2.89 2# 75 4.54 1.26 3.28 3# 150 9.09 2.42 6.67 4# 125 7.58 3.55 4.03 5# 100 6.06 4.68 1.38 -
[1] LIU Y M, CHEN W, LI D H, et al. Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi drinking water crisis in Lake Taihu, China[J]. Journal of Environmental Sciences, 2011, 23(4): 575-581. doi: 10.1016/S1001-0742(10)60450-0 [2] 秦伯强. 我国湖泊富营养化及其水环境安全[J]. 科学对社会的影响, 2007(3): 17-23. [3] PU J, WANG S R, NI Z K, et al. Implications of phosphorus partitioning at the suspended particle-water interface for lake eutrophication in China's largest freshwater lake, Poyang Lake[J]. Chemosphere, 2021, 263: 128334. doi: 10.1016/j.chemosphere.2020.128334 [4] AUVRAY F, VAN HULLEBUSCH E D, DELUCHAT V, et al. Laboratory investigation of the phosphorus removal (SRP and TP) from eutrophic lake water treated with aluminium[J]. Water Research, 2006, 40(14): 2713-2719. doi: 10.1016/j.watres.2006.04.042 [5] 孟顺龙, 裘丽萍, 陈家长, 等. 污水化学沉淀法除磷研究进展[J]. 中国农学通报, 2012, 28(35): 264-268. doi: 10.3969/j.issn.1000-6850.2012.35.049 [6] ZHANG C, GUISASOLA A, BAEZA J A. Achieving simultaneous biological COD and phosphorus removal in a continuous anaerobic/aerobic A-stage system[J]. Water Research, 2021, 190: 116703. doi: 10.1016/j.watres.2020.116703 [7] GAN F Q, ZHOU J M, WANG H Y, et al. Removal of phosphate from aqueous solution by thermally treated natural palygorskite[J]. Water Research, 2009, 43(11): 2907-2915. doi: 10.1016/j.watres.2009.03.051 [8] GOSCIANSKA J, PTASZKOWSKA-KONIARZ M, FRANKOWSKI M, et al. Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash[J]. Journal of Colloid and Interface Science, 2018, 513: 72-81. doi: 10.1016/j.jcis.2017.11.003 [9] 任琪琪, 唐婉莹, 殷鹏, 等. 镧改性膨润土对底泥内源磷控制效果[J]. 中国环境科学, 2021, 41(1): 199-206. doi: 10.3969/j.issn.1000-6923.2021.01.023 [10] 林娟, 姚佳雯, 魏笑, 等. 镧改性膨润土对磷吸附特性、机理与影响因素[J]. 环境科学与技术, 2021, 44(1): 7-12. [11] WANG Z J, MIAO R R, NING P, et al. From wastes to functions: A paper mill sludge-based calcium-containing porous biochar adsorbent for phosphorus removal[J]. Journal of Colloid and Interface Science, 2021, 593: 434-446. doi: 10.1016/j.jcis.2021.02.118 [12] ZHU D C, CHEN Y Q, YANG H P, et al. Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution[J]. Chemosphere, 2020, 247: 125847. doi: 10.1016/j.chemosphere.2020.125847 [13] 王泽龙, 李顺义, 吴朕君. 膨润土改性和复配及在废水处理中的应用进展[J]. 工业水处理, 2022, 42(2): 11-18. [14] 赵军超, 王权, 任秀娜, 等. 钙基膨润土辅助对堆肥及土壤Cu、Zn形态转化和白菜吸收的影响[J]. 环境科学, 2018, 39(4): 1926-1933. [15] ZHANG X L, XUE Y, GAO J T, et al. Comparison of adsorption mechanisms for cadmium removal by modified zeolites and sands coated with Zn-layered double hydroxides[J]. Chemical Engineering Journal, 2020, 380: 122578. doi: 10.1016/j.cej.2019.122578 [16] TANG Y Q, LIAO X S, ZHANG X L, et al. Enhanced adsorption of hexavalent chromium and the microbial effect on quartz sand modified with Al-layered double hydroxides[J]. Science of the Total Environment, 2021, 762: 143094. doi: 10.1016/j.scitotenv.2020.143094 [17] 胡美艳, 张翔凌, 姬筠森, 等. 两种碳酸系Fe-LDHs负载改性沸石对Cd(Ⅱ)吸附特性对比研究[J]. 环境科学研究, 2021, 34(11): 2655-2664. [18] GOH K H, LIM T T, DONG Z. Application of layered double hydroxides for removal of oxyanions: a review[J]. Water Research, 2008, 42(6/7): 1343-1368. [19] REZAK N, BAHMANI A, BETTAHAR N. Adsorptive removal of P(V) and Cr(VI) by calcined Zn-Al-Fe ternary LDHs[J]. Water Science and Technology, 2021, 83(10): 2504-2517. doi: 10.2166/wst.2021.123 [20] 付瑜玲, 严晗璐, 姚天启, 等. 改性镁铝水滑石对黑臭水体中磷的去除效果研究[J]. 环境科学学报, 2021, 41(10): 4032-4038. [21] 张翔凌, 黄华玲, 郭露, 等. Zn系LDHs覆膜改性人工湿地沸石基质除磷机制[J]. 环境科学, 2016, 37(8): 3058-3066. [22] 张翔凌, 陈俊杰, 郭露, 等. 垂直流人工湿地LDHs覆膜改性沸石基质强化除磷效果及其机制[J]. 环境科学, 2014, 35(12): 4553-4559. [23] YIN H, REN C, LI W. Introducing hydrate aluminum into porous thermally-treated calcium-rich attapulgite to enhance its phosphorus sorption capacity for sediment internal loading management[J]. Chemical Engineering Journal, 2018, 348: 704-712. doi: 10.1016/j.cej.2018.05.065 [24] WANG Z, LU S, WU D, et al. Control of internal phosphorus loading in eutrophic lakes using lanthanum-modified zeolite[J]. Chemical Engineering Journal, 2017, 327: 505-513. doi: 10.1016/j.cej.2017.06.111 [25] 范中亚, 王文才, 蒋锦刚, 等. 华阳河湖群沉积物内源磷释放风险及控制策略[J]. 环境科学研究, 2020, 33(5): 1170-1178. [26] 刘辉, 胡林娜, 朱梦圆, 等. 沉积物有效态磷对湖库富营养化的指示及适用性[J]. 环境科学, 2019, 40(9): 4023-4032. [27] 金晓丹, 吴昊, 陈志明, 等. 长江河口水库沉积物磷形态、吸附和释放特性[J]. 环境科学, 2015, 36(2): 448-456. [28] RAHMAN S, NAVARATHNA C M, KRISHNA D N, et al. High capacity aqueous phosphate reclamation using Fe/Mg-layered double hydroxide (LDH) dispersed on biochar[J]. Journal of Colloid and Interface Science, 2021, 597: 182-195. doi: 10.1016/j.jcis.2021.03.114 [29] WANG G R, JIN Z L, ZHANG W X. Ostensibly phosphatized NiAl LDHs nanoflowers with remarkable charge storage property for asymmetric supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 577: 115-126. doi: 10.1016/j.jcis.2020.05.032 [30] WANG P, DU M L, ZHU H, et al. Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism[J]. Journal of Hazardous Materials, 2015, 286: 533-544. doi: 10.1016/j.jhazmat.2014.12.034 [31] PENG X M, LUO W D, WANG M, et al. Insights into the adsorption mechanism of carbon cellulose fiber loaded globular flowers bimetallic layered double hydroxide for efficiency pollutant removal[J]. Journal of Molecular Liquids, 2019, 290: 111201. doi: 10.1016/j.molliq.2019.111201 [32] CHEN H Y, LU C, YANG H M. Lanthanum compounds-modified rectorite composites for highly efficient phosphate removal from wastewater[J]. Applied Clay Science, 2020, 199: 105875. doi: 10.1016/j.clay.2020.105875 [33] ZHANG X L, GUO L, HUANG H L, et al. Removal of phosphorus by the core-shell bio-ceramic/Zn-layered double hydroxides (LDHs) composites for municipal wastewater treatment in constructed rapid infiltration system[J]. Water Research, 2016, 96: 280-291. doi: 10.1016/j.watres.2016.03.063 [34] ROBB M, GREENOP B, GOSS Z, et al. Application of PhoslockTM, an innovative phosphorus binding clay, to two Western Australian waterways: Preliminary findings[J]. Hydrobiologia, 2003, 494(1/2/3): 237-243. [35] 陈小燕, 刘键熙, 苏玉萍, 等. 两种锁磷剂锁磷效果对比研究[J]. 福建师范大学学报(自然科学版), 2016, 32(4): 56-60. [36] 朱广伟, 李静, 朱梦圆, 等. 锁磷剂对杭州西湖底泥磷释放的控制效果[J]. 环境科学, 2017, 38(4): 1451-1459. [37] 余先旭, 孙珮石, 朱宝平, 等. 锁磷剂(Phoslock)对滇池水体的除磷试验研究[J]. 贵州环保科技, 2006(1): 6-9. [38] SONDERGAARD M, JENSEN J P, JEPPESEN E. Role of sediment and internal loading of phosphorus in shallow lakes[J]. Hydrobiologia, 2003, 506(1/2/3): 135-145. [39] 蔡顺智, 李大鹏, 王忍, 等. 多重扰动对湖泊内源磷迁移转化的影响[J]. 环境科学, 2016, 37(11): 4203-4211. [40] 高湘, 李妍, 何怡. 湖泊底泥磷释放及磷形态变化[J]. 环境工程学报, 2015, 9(7): 3350-3354. doi: 10.12030/j.cjee.20150745