-
氯酚类化合物是广泛应用的工业原料与中间体,其化学稳定性与高生物毒性已引起研究者们的关注[1]。自然界中的氯酚类化合物一方面来自于富含氯酚类工业废水的排放废水,另一方面源自地球化学作用的自然合成[2-3]。目前污水处理厂难以完全去除工业废水中的氯酚类化合物,导致该类化合物随尾水进入环境,危及人类及生态环境的健康。
高级氧化技术是去除氯酚类污染物的主要方法,包括臭氧氧化、芬顿氧化、光催化氧化与过硫酸盐氧化等[4]。SUNG等利用臭氧氧化土壤中的氯酚[5]。KUAN等将FeOx负载到TiO2和CuFe2O4上,再与紫外联用可产生羟基自由基,从而实现对4-CP的去除[6]。BARAKAT 等使用Co(Ⅲ)掺杂TiCl4与紫外联用实现2-氯酚的去除[7]。但以上方法存在制备工艺复杂、能耗高和有毒金属离子浸出等问题。Mn作为代表性的过渡金属元素之一,其生物毒性低、在自然界中分布广泛,是一种天然和高活性的氧化剂[8]。最常见的锰氧化物为二氧化锰晶体。有研究表明,影响二氧化锰催化降解性能的可能因素有锰的平均氧化态(Mn AOS)、三价锰元素的丰度等[8-9]。然而截至目前,并没有直接证据证明他们与MnO2反应活性之间的关系。因此,探究MnO2反应活性的影响因素十分必要。但二氧化锰晶体易团聚导致催化活性位点减少,在一定程度上降低了其催化活性。BC掺杂过渡金属可有效抑制金属离子浸出,并且BC原材料丰富、制备工艺简单、不存在二次污染[10-12]。
本研究利用水热法将γ-MnO2负载到BC表面,合成了γ-MnO2@BC,且考察了其活化PMS对4-CP的氧化降解性能,此外,分析了BC对不同晶相二氧化锰结晶的影响,探讨了γ-MnO2@BC活化PMS的机理和不同晶相二氧化锰催化性能差异的主要原因。
生物炭负载γ-MnO2纳米复合材料活化过一硫酸盐降解对氯苯酚的性能及机理
Performance and mechanism of biochar doped γ-MnO2 nanocomposite activated peroxymonsulfate on 4-Chlorophenol degradation
-
摘要: 采用水热法合成了4种不同晶相结构MnO2及生物炭负载γ-MnO2复合纳米材料,并对其活化过硫酸盐(PMS)降解4-CP的性能进行了研究。采用XRD、SEM、EDS以及XRF等手段对不同复合纳米材料进行了表征分析,发现仅有γ-MnO2成功负载到生物炭材料表面形成γ-MnO2@BC复合纳米材料。在优化条件下,γ-MnO2@BC活化PMS体系能在20 min内将10 mg·L−1对氯苯酚完全降解。γ-MnO2@BC对H2PO4−之外的阴离子均表现出较强的抗干扰性。采用自由基捕获及电子自旋共振波谱(ESR)、X射线光电子能谱(XPS)等手段研究了该复合纳米材料活化PMS降解污染物的机理。结果表明,γ-MnO2@BC活化PMS产生的活性氧物种为单线态氧,并发现Mn(III)与Mn(IV)的比值是影响不同晶相二氧化锰催化性能的主要因素。Abstract: Four kinds of MnO2 with different crystal phase structure and biochar supported γ-MnO2 nanocomposites were synthesized by hydrothermal method, and their performance on activating peroxymonsulfate(PMS) and degrading 4-CP was studied. XRD, SEM, EDS and XRF were used to characterize different nano-composite materials. It was found that only γ-MnO2 was successfully loaded on the surface of biochar to form γ-MnO2@BC. Under the optimum conditions, 10 mg·L−1 4-chlorophenol could be completely degraded by γ-MnO2@BC activated PMS in 20 min. γ-MnO2@BC showed the strong anti-interference against anions except for H2PO4−. Finally, the mechanism of reactive oxygen species (ROS) generated by γ-MnO2@BC activated PMS was studied by means of free radical capture, electron spin resonance spectroscopy (ESR) and X-ray energy spectroscopy (XPS). The results showed that the ROS produced by γ-MnO2@BC activated PMS was singlet oxygen. It is found that the ratio of Mn(III) to Mn(IV) was the main factor affecting the catalytic performance of MnO2 with different crystalline phases.
-
Key words:
- MnO2 /
- crystal phase /
- biochar /
- peroxymonsulfate /
- degradation of 4-chlorophenol
-
表 1 不同实验中4-CP,催化剂和PMS掺杂量
Table 1. Doping amount of 4-CP, catalyst and PMS in different experiments
实验 催化剂/(g·L−1) PMS/(mmol·L−1) 筛选实验
吸附实验0.6
0.60.5
0.5γ-MnO2BC配比实验 0.6 0.5 催化剂掺杂量实验 0.2~0.6 0.5 PMS掺杂量实验 0.2 0.5~1.5 单因素和阴离子干扰实验 0.2 1.0 表 2 不同材料的主要元素含量
Table 2. Contents of main elements in different materials
材料 Mn C O K Si 其他 α-MnO2 77.14 0.86 10.08 9.41 0.49 2.02 软锰矿 MnO2 81.01 0.47 17.16 0 0.32 1.04 γ-MnO2 86.43 0.43 11.38 0 0.13 1.63 δ-MnO2 70.54 0.53 15.35 11.74 0.77 1.07 MnCO3@BC 49.16 7.72 11.78 3.33 26.48 1.53 nMnOx-1@BC 0.57 31.22 17.13 1.38 46.46 3.42 γ-MnO2@BC 42.59 11.16 10.6 0.85 32.5 2.3 nMnOx-2@BC 27.1 17.99 12.44 3.02 37.52 1.93 表 3 水质指标
Table 3. Water quality parameters
水样 TP/(mg·L−1) COD/(mg·L−1) pH 氨氮/(mg·L−1) 斛兵塘湖水 0.110 78.3 7.55 0.066 南淝河河水 0.038 91.3 7.3 0.262 -
[1] 钟少芬, 莫健文, 李阳苹, 等. 粉末活性炭对水中氯酚的吸附[J]. 环境工程学报, 2016, 10(6): 2927-2932. doi: 10.12030/j.cjee.201501023 [2] GAO X, CHEN J, CHE H, et al. Rationally constructing of a novel composite photocatalyst with multi charge transfer channels for highly efficient sulfamethoxazole elimination: Mechanism, degradation pathway and DTF calculation[J]. Chemical Engineering Journal 2021, 273: 128506 [3] XIAO S, CHENG M, ZHONG H, et al. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review[J]. Chemical Engineering Journal, 2020, 384: 123265. doi: 10.1016/j.cej.2019.123265 [4] 王晓东, 张光辉, 顾平, 等. 水体中氯酚类污染物的生物降解性研究进展[J]. 中国给水排水, 2008, 24(16): 4. [5] SUNG M, HUANG C. In situ removal of 2-chlorophenol from unsaturated soils by ozonation[J]. Environmental Science & Technology, 2002, 36(13): 2911-2918. [6] KUAN C, CHANG S, SCHROEDER S. Fenton-Like oxidation of 4-chlorophenol: Homogeneous or heterogeneous[J]. Industrial & Engineering Chemistry Research, 2015, 54(33): 8122-8129. [7] BARAKAT M, SCHAEFFER H, HAYES G, et al. Photocatalytic degradation of 2-chlorophenol by co-doped TiO2 nanoparticles[J]. Applied Catalysis B Environmental, 2005, 57(1): 23-30. doi: 10.1016/j.apcatb.2004.10.001 [8] HUANG J, ZHONG S, DAI Y, et al. Effect of MnO2 phase structure on the oxidative reactivity toward bisphenol A degradation[J]. Environmental Science & Technology, 2018, 52(19): 11309-11318. [9] MCKENDRY I, KONDAVEETI S, SHUMLAS S, et al. Decoration of the layered manganese oxide birnessite with Mn(II/III) gives a new water oxidation catalyst with fifty-fold turnover number enhancement[J]. Dalton Transactions, 2015, 44(29): 12981-12994. doi: 10.1039/C5DT01436K [10] LEE H, KIM H I, WEON S, et al. Activation of persulfates by graphitized nanodiamonds for removal of organic compounds[J]. Environmental Science & Technology, 2016, 50(18): 10134-10142. [11] DUAN X, SU C, ZHOU L, et al. Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds[J]. Applied Catalysis B:Environmental, 2016, 194: 7-15. doi: 10.1016/j.apcatb.2016.04.043 [12] FANG G, LIU C, GAO J, et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation[J]. Environmental Science & Technology, 2015, 49(9): 5645-5653. [13] MA J, ZHANG S, DUAN X, et al. Catalytic oxidation of sulfachloropyridazine by MnO2: Effects of crystalline phase and peroxide oxidants[J]. Chemosphere, 2021, 267: 129287. doi: 10.1016/j.chemosphere.2020.129287 [14] WANG Z, YUAN R, GUO Y, et al. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone reagent: Kinetic analysis[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 1083-1087. [15] MA J, YANG Y, JIANG X, et al. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water[J]. Chemosphere, 2018, 190: 296-306. doi: 10.1016/j.chemosphere.2017.09.148 [16] ZHAO C, SHAO B, YAN M, et al. Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: A review[J]. Chemical Engineering Journal, 2021, 416: 128829. doi: 10.1016/j.cej.2021.128829 [17] 王静, 邢梦林, 邰超, 等. 不同光谱区间日光照射下水体成分的光致羟基自由基生成研究[J]. 环境化学, 2015, 34(12): 2162-2169. doi: 10.7524/j.issn.0254-6108.2015.11.2015060402 [18] YUAN R, RAMJAUN SN, WANG Z, et al. Effects of chloride ion on degradation of acid orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds[J]. Journal of Hazardous Materials. 2011, 196: 173-179. [19] FAHEEM, DU J, KIM S, et al. Application of biochar in advanced oxidation processes: supportive, adsorptive, and catalytic role[J]. Environmental Science And Pollution Research International 2020, 27(30): 37286-37312. [20] ILTON E, POST J, HEANEY P, et al. XPS determination of Mn oxidation states in Mn (hydr)oxides[J]. Applied Surface Science, 2016, 366: 475-485. doi: 10.1016/j.apsusc.2015.12.159 [21] Al-NU'AIRAT J, OLUWOYE I, ZEINALI N, et al. Review of chemical reactivity of singlet oxygen with organic fuels and contaminants[J]. Chemical Record, 2021, 21(2): 315-342. doi: 10.1002/tcr.202000143 [22] SUN C, SHI Z. Transition-metal-free coupling reactions[J]. Chemical Reviews, 2014, 114(18): 9219-9280. doi: 10.1021/cr400274j