-
近年来,越来越多的沿海地区采用海水淡化或海水直接利用技术作为缓解淡水紧缺危机的方法[1],而海水冲厕技术即为海水直接利用技术之一。使用海水冲厕可有效缓解我国沿海城市生活用淡水资源的供需矛盾[2],但采用此技术会产生大量的高含盐生活污水,给污水处理带来了巨大挑战[3]。有研究[4]表明,膜生物反应器(membrane bioreactor, MBR)对于处理高盐废水有较为显著的效果,MBR中的活性微生物经培养驯化后,能适应不同盐度的废水。ZHANG等[5]运用MBR工艺处理海水养殖废水时,当盐度由0 g·L−1增加到30 g·L−1时,MBR对COD和NH4+-N的去除率均保持在90%以上。然而MBR运行过程中产生的膜污染仍是影响MBR工艺稳定运行及阻碍其进一步商业化应用的主要因素[6]。
电化学MBR是近年来发展起来的新型污水处理技术[7],有研究表明,电场是缓解膜污染、提高出水水质的有效清洁的途径之一[8],其属于使用物化法控制膜污染的范畴,具有清洗效果好、过程稳定、无需外加化学药剂、没有二次污染、成本低等特点,可为拓展MBR的工程化应用提供技术支撑[9]。DUDCHENKO等[10]采用改性导电膜,建立了膜阴极MBR,发现在-3 V和-5 V下运行100 min时,TMP分别降低了33%和51%,外加电场可有效缓解膜污染。但外加电场的MBR系统应用于处理高盐废水的研究较少。本研究采用电强化的陶瓷膜MBR(E-MBR)处理模拟的海水冲厕水,通过与传统MBR(C-MBR)进行对比,考察了在不同电流密度下外加电场MBR系统运行性能、体系内活性污泥特性以及系统运行过程中膜污染行为的变化规律,以期为外加电场MBR处理含盐污水的实际应用提供参考。
电流密度对电强化MBR性能的影响
Effect of current density on the performance of electrically enhanced membrane bioreactor
-
摘要: 采用外加电场构建了电强化膜生物反应器(electrically enhanced membrane bioreactor,E-MBR)用以处理海水冲厕水,分析了在不同电流密度下污染物的去除效果、活性污泥特性和膜污染行为的变化规律。结果表明:电流密度由2 A·m−2增大至2.6 A·m−2再增加至3.2 A·m−2的过程中,E-MBR中化学需氧量(COD)和氨氮(NH4+-N)的平均去除率呈先增加后降低的趋势,COD的平均去除率由90.88%增加至94.81%而后降低为86.74%,NH4+-N的平均去除率由95.31%增加至96.37%而后降低为88.33%。由于外加电场产生的电絮凝作用以及菌种对电场的耐受差异,不同电流密度下E-MBR中总磷(total phosphorus,TP)的去除率均稳定在99%以上,而对照MBR(control membrane bioreactor,C-MBR)中TP的平均去除率仅为20%。E-MBR中混合液悬浮固体质量浓度(MLSS)均高于C-MBR系统,电流密度为2.6 A·m−2时E-MBR中MLSS增长最快,电流密度为3.2 A·m−2时E-MBR中MLSS增长最缓慢。随着电流密度增大,污泥粒径逐渐增大,污泥Zeta电位(绝对值)均小于C-MBR系统的Zeta电位。溶解性微生物代谢产物(SMP)和胞外聚合物(EPS)中多糖和蛋白质的含量随着电流密度的增大而降低。增大电流密度时,跨膜压差(TMP)的增长速率会随之降低,滤饼层阻力在系统总阻力中所占比例减少,说明外加电场可有效缓解膜污染。Abstract: In this study, an electrically enhanced ceramic membrane bioreactor (E-MBR) was constructed in the form of an external electric field to treat simulated seawater toilet flushing water. The effect of pollutant removal in the system at different current densities, the changing laws of activated sludge characteristics and membrane fouling behavior were analyzed. When the current density increased from 2 A·m−2 to 2.6 A·m−2 and then to 3.2 A·m−2, the average removal rates of COD and NH4+-N in the E-MBR system increased first and then decreased, the average removal rate of COD increased from 90.88% to 94.81% and then decreased to 86.74%, and the average removal rate of NH4+-N increased from 95.31% to 96.37% and then decreased to 88.33%. Due to the electric flocculation produced by the external electric field and the difference of bacteria tolerance to electric field, the removal rate of TP in the E-MBR system at different current densities was stable above 99%, while the average removal rate of TP in C-MBR was only 20%. MLSS in E-MBR was higher than that in C-MBR system, when the current density was 2.6 A·m−2, the fastest increase of MLSS in E-MBR occurred, and when the current density was 3.2 A·m−2, the slowest increase of MLSS in E-MBR occurred. As the current density increased, the sludge particle size gradually increased, and the sludge Zeta potential (absolute value) was less than that of the C-MBR system. The content of polysaccharide and protein in soluble microbial product (SMP) and extracellular polymeric substance (EPS) also decreased with the increase of current density. As the current density increased, the growth rate of TMP decreased, and the proportion of the cake layer resistance in the total resistance of the system decreased, which showed that an external electric field can effectively alleviate membrane fouling.
-
表 1 3个阶段E-MBR和C-MBR中膜阻力分布表
Table 1. Distribution of membrane resistance in E-MBR and C-MBR at three stages 1011 m−1
阶段 实验组 RT Rm Rcp Rc Rb 第1阶段 E-MBR 3.24 0.091 1.54 0.673 0.929 第1阶段 C-MBR 4.36 0.090 1.28 1.88 1.11 第2阶段 E-MBR 2.51 0.089 1.04 0.46 0.92 第2阶段 C-MBR 3.62 0.094 0.596 1.57 1.23 第3阶段 E-MBR 2.77 0.094 1.16 0.496 1.02 第3阶段 C-MBR 5.75 0.09 1.92 2.4 1.29 -
[1] LIN S S, ZHAO H Y, ZHU L P, et al. Seawater desalination technology and engineering in China: A review[J]. Desalination, 2021, 498: 114728. doi: 10.1016/j.desal.2020.114728 [2] LIU X M, DAI J, CHEN G H, et al. Evaluation of potential environmental benefits from seawater toilet flushing[J]. Water Research, 2019, 162: 505-515. doi: 10.1016/j.watres.2019.07.016 [3] LI Y T, WANG Y F, GAO Y Z, et al. Seawater toilet flushing sewage treatment and nutrients recovery by marine bacterial-algal mutualistic system[J]. Chemosphere, 2018, 195: 70-79. doi: 10.1016/j.chemosphere.2017.12.076 [4] ZHANG H N, YUAN X, WANG H, et al. Performance and microbial community of different biofilm membrane bioreactors treating antibiotic-containing synthetic mariculture wastewater[J]. Membranes, 2020, 10(10): 282. doi: 10.3390/membranes10100282 [5] ZHANG H N, WANG H Q, JIE M R, et al. Performance and microbial communities of different biofilm membrane bioreactors with pre-anoxic tanks treating mariculture wastewater[J]. Bioresource Technology, 2019, 295: 122302. [6] 周翔, 吕娜, 李秀芬, 等. Cu-NWs/RGO/PVDF导电微滤膜的制备及其抗污染性能[J]. 环境工程学报, 2021, 16(1): 281-291. [7] 于伯洋, 苏帆, 孙境求, 等. 电控膜生物反应器技术回顾与展望[J]. 环境科学学报, 2020, 40(12): 4215-4224. [8] FAN X, ZHAO H, QUAN X, et al. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation[J]. Water Research, 2016, 88: 285-292. doi: 10.1016/j.watres.2015.10.043 [9] 印霞棐, 李秀芬, 华兆哲, 等. 电场控制MBR膜污染技术研究进展[J]. 膜科学与技术, 2020, 40(2): 127-135. [10] DUDCHENKO A V, ROLF J, RUSSELL K, et al. Organic fouling inhibition on electrically conducting carbon nanotube-polyvinyl alcohol composite ultrafiltration membranes[J]. Journal of Membrane Science, 2014, 468(15): 1-10. [11] WANG S, GAO M C, SHE Z L, et al. Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal, microbial activity and microbial community of a sequencing batch reactor[J]. Bioresource Technology, 2016, 216: 428-436. doi: 10.1016/j.biortech.2016.05.099 [12] WANG Z C, GAO M C, WANG Z, et al. Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor[J]. Chemosphere, 2013, 93: 2789-2795. doi: 10.1016/j.chemosphere.2013.09.038 [13] COSTA R E D, LOBO-RECIO M A, BATTISTELLI A A, et al. Comparative study on treatment performance, membrane fouling, and microbial community profile between conventional and hybrid sequencing batch membrane bioreactors for municipal wastewater treatment[J]. Environmental Science and Pollution Research, 2018, 25(32): 32767-32782. doi: 10.1007/s11356-018-3248-8 [14] XU L, ZHANG G Q, YUAN G E, et al. Anti-fouling performance and mechanism of anthraquinone/polypyrrole composite modified membrane cathode in a novel MFC-aerobic MBR coupled system[J]. Royal Society of Chemistry Advances, 2015, 5(29): 22533-22543. [15] LOGHAVI L, SASTRY S K, YOUSEF A E. Effect of moderate electric field frequency on growth kinetics and metabolic activity of Lactobacillus acidophilus[J]. Biotechnology Progress, 2010, 24(1): 148-153. [16] 印霞棐, 李秀芬, 华兆哲, 等. 电极间距对自生电场MBR去除污染物的影响[J]. 环境工程学报, 2020, 14(8): 2164-2175. doi: 10.12030/j.cjee.201910072 [17] THAMARAISELVAN T, RONEN A, LERMEN S, et al. Low voltage electric potential as driving force to hinder biofouling in self-supporting carbon nanotube membranes[J]. Water Research, 2018, 129: 143-153. doi: 10.1016/j.watres.2017.11.004 [18] 陈文希, 李亮, 钱光升, 等. 电凝聚强化膜生物反应器处理模拟生活污水[J]. 环境工程, 2014, 32(9): 56-60. [19] EMMA F, SCALSCHI L, LLORENS E, et al. NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation[J]. Journal of Experimental Botany, 2015, 66(21): 6777-6790. doi: 10.1093/jxb/erv382 [20] TOSHIHARU, MAENO, YOSHITAKA, et al. Cellular redox state protects acetaldehyde-induced alteration in cardiomyocyte function by modifying Ca2+ release from sarcoplasmic reticulum.[J]. American Journal of Physiology Heart and Circulatory Physiology, 2008, 294(1): H121-H133. doi: 10.1152/ajpheart.00520.2007 [21] 张姣. 电场耦合膜生物反应器膜污染控制和强化除磷研究[D]. 北京: 清华大学, 2015. [22] CHEN M, ZHANG X, WANG Z, et al. Impacts of quaternary ammonium compounds on membrane bioreactor performance: acute and chronic responses of microorganisms[J]. Water research, 2018, 134: 153-161. doi: 10.1016/j.watres.2018.01.073 [23] SU F, LIANG Y, LIU G, et al. Enhancement of anti-fouling and contaminant removal in an electro-membrane bioreactor: Significance of electrocoagulation and electric field[J]. Separation and Purification Technology, 2020, 248: 117077. doi: 10.1016/j.seppur.2020.117077 [24] HASAN S W, ELEKTOROWICZ M, OLESZKIEWICZ J A. Correlations between trans-membrane pressure (TMP) and sludge properties in submerged membrane electro-bioreactor (SMEBR) and conventional membrane bioreactor (MBR)[J]. Bioresource Technology, 2012, 120(3): 199-205. [25] HUANG C, LIN J, LEE W, et al. Effect of coagulation mechanism on membrane permeability in coagulation-assisted microfiltration for spent filter backwash water recycling[J]. Colloids and Surfaces A-physicochemical and Engineering Aspects, 2011, 378(1): 72-78. [26] IBEID S, ELEKTOROWICZ M, OLESZKIEWICZ J A. Modification of activated sludge properties caused by application of continuous and intermittent current[J]. Water Research, 2013, 47(2): 903-910. doi: 10.1016/j.watres.2012.11.020 [27] SHI S, XU J, ZENG Q, et al. Impacts of applied voltage on EMBR treating phenol wasterwater: Performance and membrane antifouling mechanism[J]. Bioresource Technology, 2019, 282: 56-62. doi: 10.1016/j.biortech.2019.02.113 [28] TIAN Y, LI H, LI L P, et al. In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation[J]. Biosensors and Bioelectronics, 2015, 64(4): 189-195. [29] WANG Y K, LI W W, SHENG G P, et al. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling[J]. Water Research, 2013, 47(15): 5794-5800. doi: 10.1016/j.watres.2013.06.058 [30] HAN X M, WANG Z W, CHEN M, et al. Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: Protective mechanisms of extracellular polymeric substances[J]. Environmental Science and Technology, 2017, 51(6): 3233-3241. doi: 10.1021/acs.est.6b05475 [31] AKAMATSU K, LU W, SUGAWARA T, et al. Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field[J]. Water Research, 2010, 44(3): 825-830. doi: 10.1016/j.watres.2009.10.026 [32] ZHENG J, MA J, WANG Z, et al. Contaminant removal from source waters using cathodic electrochemical membrane filtration: mechanisms and Implications[J]. Environmental Science and Technology, 2017, 51(5): 2757-2765. doi: 10.1021/acs.est.6b05625 [33] HUANG J, WANG Z, ZHANG J, et al. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors[J]. Scientific Reports, 2015, 5(1): 3380-3893. [34] 王明明. 弱电场作用下陶瓷膜MBR运行效果及膜污染控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.