-
与传统生物脱氮工艺相比,短程硝化反硝化工艺在硝化阶段可减少25%的曝气量,在反硝化阶段节约40%的碳源[1]。实现短程硝化反硝化的关键在于富集AOB的同时抑制NOB的活性与增殖。NOB的长期抑制和淘洗需要多种控制方法的组合。目前提出的影响短程硝化稳定的主要因素有FA、FNA、DO、HRT、温度等[2]。此外,包埋填料的填充率是保证系统中微生物量的关键因素。
近年来短程硝化反硝化工艺在城市污水处理中的应用备受关注。吕利平等[3]采用交替好氧缺氧短程硝化反硝化处理城市污水时,NAR稳定在78%以上,出水TN去除率在73%左右。陈英文等[4]在常温下进行连续流短程硝化反硝化脱氮时,NAR为95%,TN去除率为86.9%。短程硝化反硝化工艺采用的活性污泥系统由于存在启动时间长、工艺控制要求高等问题,大大限制了其规模化工程应用。相较于活性污泥,采用包埋固定化技术可以有效地维持高浓度的微生物,提高该工艺的运行效率和反应器的稳定性。同时,包埋填料对环境具有耐受性,实际废水通常含有耗氧有机物(以COD计),容易使异氧菌增殖从而和AOB形成竞争关系,而通过包埋固定化的形式能够给微生物提供一个相对稳定的微环境,可避免环境因素的干扰[5]。此外,短程硝化污泥系统通常在低DO质量浓度(0.5~1.5 mg·L−1)条件下运行,通过低DO控制能够形成短程硝化,但可能伴随着较低的NH4+-N氧化效率和污泥膨胀问题[6]。同时,LIU等[7]发现长期的低DO环境会导致短程硝化转变为完全硝化。YU等[8]也发现了类似的结果,且发现这种现象的主要原因是系统中存在的k型NOB(Nitrospira)会逐渐适应低DO基质,导致短程硝化过程难以长期维持。而在包埋填料系统内,DO质量浓度(1.0~5.0 mg·L−1)更高[9],因而容易提高短程硝化性能以及长期稳定性[9]。因此,包埋固定化技术已经广泛用于改善生物脱氮。
响应曲面法通过对实验数据采用多元二次回归方程来拟合影响因子与响应值之间的函数关系,再分析回归方程以寻求最优工艺参数,从而能够显著地减少工作量,故该方法已经成功用于各种生化过程的优化[10]。因此,本实验研究针对HRT、DO和填充率等因素对于短程硝化包埋填料效率稳定维持进行了探究,在短程硝化包埋填料活性恢复稳定的情况下,采用响应曲面法对3个参数进行了正交分析,通过Design-Expert软件建立了二次多项回归方程,确定了连续流短程硝化反应器的最佳运行工况,之后接反硝化包埋填料,形成基于包埋填料的短程硝化反硝化脱氮工艺,并处理模拟城市污水,以期为该技术的实际应用提供参考。
基于包埋填料的短程硝化反硝化工艺的脱氮性能优化
Performance optimization of partial nitrification and denitrification based on immobilized fillers
-
摘要: 为优化短程硝化反硝化工艺对模拟城市污水的脱氮处理性能,通过包埋固定化技术分别制得短程硝化、反硝化填料,形成连续流脱氮工艺。结果表明,短程硝化填料活性恢复后的氨氧化速率(AOR)可达39.83 mg∙(L∙h)−1,亚硝酸盐积累率(NAR)稳定在96.60%。采用响应曲面法考察了短程硝化过程中的DO、HRT和填充率等因素对氨氮去除率(ARR)和NAR的影响,并建立了二次回归模型,通过模型预测的最佳运行工况为:HRT为3.48 h,DO为3.64 mg∙L−1,填充率为20%。此时,后置反硝化包埋填料,当平均C/N为2.82时,总氮出水平均质量浓度为2.29 mg·L−1,去除率稳定在94.27%,说明该工艺对城市污水具有良好的脱氮性能。高通量测序结果表明,短程硝化和反硝化包埋填料内部的功能菌均有大量增殖,并始终保持着优势地位。Abstract: In order to optimize the performance of partial nitrification and denitrification on nitrogen removal in simulated municipal wastewater treatment, partial nitrification and denitrification fillers were prepared by the immobilization technology, and a continuous flow nitrogen removal process was realized. The results showed that the ammonia oxidation rate (AOR) of the partial nitrification immobilized fillers after activity recovery could reach 39.06 mg∙(L∙h)−1, and the nitrite accumulation rate (NAR) maintained at about 96.60%. The response surface methodology (RSM) was used to investigate the effects of DO, HRT and filling rate in the partial nitrification process of immobilized fillers on the ammonia nitrogen removal rate (ARR) and NAR, and a quadratic regression model was established to predict the best operating conditions: HRT of 3.48 h, DO of 3.64 mg∙L−1, the filling rate of 20%. Under these conditions, the post-denitrification immobilized fillers were installed, the average mass concentration of total nitrogen (TN) in the effluent was 2.29 mg∙L−1 with a stable removal rate of 94.27% when the average C/N was 2.82. This indicates that the process had a good nitrogen removal performance from municipal wastewater. The results of high-throughput sequencing showed that the functional bacteria in the partial nitrification and denitrification immobilized fillers largely proliferated and always maintained dominance.
-
表 1 响应面设计因素与水平
Table 1. Response surface design factors and levels
因素 因素编码 因素水平及编码 −1 0 1 HRT/ h X1 1 2.5 4 DO/(mg·L−1) X2 2 4 6 填充率/% X3 10 15 20 表 2 BBD实验设计及结果
Table 2. Box-Behnken design and experimental results
实验序号 HRT/h DO/(mg·L−1) 填充率/% 实际测定ARR值 方程预测ARR值 实际测定NAR值 方程预测NAR值 1 1 2 15 28.00 24.35 97.30 96.54 2 4 6 15 100.00 100.00 78.05 78.81 3 1 6 15 36.88 36.66 88.50 88.81 4 1 4 10 20.03 21.00 97.34 97.87 5 2.5 4 15 85.57 85.17 91.89 92.45 6 4 4 20 100.00 99.03 93.33 92.80 7 4 2 15 68.23 68.45 95.64 95.33 8 1 4 20 30.63 33.53 96.48 96.41 9 2.5 2 20 63.03 63.78 100.00 100.00 10 2.5 4 15 82.91 85.17 93.76 92.45 11 2.5 4 15 83.56 85.17 92.80 92.45 12 2.5 4 15 87.58 85.17 92.71 92.45 13 2.5 4 15 86.23 85.17 91.11 92.45 14 2.5 6 10 65.81 65.06 89.00 88.17 15 2.5 6 20 95.44 92.76 86.65 86.42 16 4 4 10 69.49 66.59 90.20 90.27 17 2.5 2 10 43.85 46.53 97.78 98.01 表 3 ARR的回归模型方差分析
Table 3. Analysis of variance (ANOVA) with ARR
来源 平方和 自由度 均方 F值 P值 模型 11 090.67 9 1 232.30 113.97 <0.000 1 A 6 170.49 1 6 170.49 570.69 <0.000 1 B 1 128.60 1 1 128.60 104.38 <0.000 1 C 1 010.70 1 1 010.70 93.48 <0.000 1 AB 130.99 1 130.99 12.11 0.010 3 AC 99.10 1 99.10 9.17 0.019 2 BC 27.30 1 27.30 2.52 0.156 1 A2 1 591.83 1 1 591.83 147.22 <0.000 1 B2 233.62 1 233.62 21.61 0.002 3 C2 481.05 1 481.05 44.94 0.000 3 残差 75.69 7 10.81 − − 失拟项 60.89 3 20.3 5.49 0.066 8 纯误差 14.79 4 3.7 − − 表 4 NAR的回归模型方差分析
Table 4. Analysis of variance (ANOVA) with NAR
来源 平方和 自由度 均方 F值 P值 模型 430.16 9 47.8 45.1 < 0.000 1 A 62.72 1 62.72 59.19 0.000 1 B 294.27 1 294.27 277.7 < 0.000 1 C 0.572 4 1 0.572 4 0.540 2 0.486 2 AB 19.32 1 19.32 18.23 0.003 7 AC 3.98 1 3.98 3.76 0.093 8 BC 5.22 1 5.22 4.93 0.061 9 A2 2.7 1 2.7 2.55 0.154 5 B2 13.35 1 13.35 12.6 0.009 3 C2 30.34 1 30.34 28.63 0.001 1 残差 7.42 7 1.06 − − 失拟项 3.4 3 1.13 1.13 0.437 1 纯误差 4.02 4 1 − − 表 5 包埋填料Alpha多样性指标
Table 5. Alpha diversity index of immobilized fillers
样本 运行时间/d OUTs Simpson Ace Chao1 覆盖率/% P1 0 273 0.05 278.22 278.53 99.96 P2 108 203 0.11 209.22 209.5 99.96 D1 0 361 0.06 376 387.71 99.93 D2 40 212 0.16 230 225 99.93 -
[1] KORNAROS M, DOKIANAKIS S N, LYBERATOS G. Partial nitrification/denitrification can be attributed to the slow response of nitrite oxidizing bacteria to periodic anoxic disturbances[J]. Environmental Science & Technology, 2010, 44(19): 7245-7253. [2] LIU X, KIM M, NAKHLA G, et al. Partial nitrification-reactor configurations, and operational conditions: Performance analysis[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103984. doi: 10.1016/j.jece.2020.103984 [3] 吕利平, 李航, 庞飞, 等. 交替好氧/缺氧短程硝化反硝化工艺处理低 C/N城市污水[J]. 环境工程学报, 2020, 6(14): 1529-1536. [4] 陈英文, 陈徉, 沈树宝. 常温下连续流短程硝化反硝化研究[J]. 环境污染与防治, 2008, 30(4): 6-9. doi: 10.3969/j.issn.1001-3865.2008.04.002 [5] LI X, SUN S, YUAN H, et al. Mainstream upflow nitritation-anammox system with hybrid anaerobic pretreatment: Long-term performance and microbial community dynamics[J]. Water Research, 2017, 125: 298-308. doi: 10.1016/j.watres.2017.08.048 [6] GE S, WANG S, YANG X, et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review[J]. Chemosphere, 2015, 140: 85-98. doi: 10.1016/j.chemosphere.2015.02.004 [7] LIU G, WANG J. Long-Term Low DO Enriches and Shifts Nitrifier Community in Activated Sludge[J]. Environmental Science & Technology, 2013, 47(10): 5109-5117. [8] YU L, CHEN S, CHEN W, et al. Experimental investigation and mathematical modeling of the competition among the fast-growing “r-strategists” and the slow-growing “K-strategists” ammonium-oxidizing bacteria and nitrite-oxidizing bacteria in nitrification[J]. Science of the Total Environment, 2020, 702: 135049. doi: 10.1016/j.scitotenv.2019.135049 [9] RONGSAYAMANONT C, LIMPIYAKORN T, KHAN E. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors[J]. Bioresource Technology, 2014, 164: 254-263. doi: 10.1016/j.biortech.2014.04.094 [10] ANTWI P, ZHANG D, XIAO L, et al. Modeling the performance of single-stage nitrogen removal using anammox and partial nitritation (SNAP) process with backpropagation neural network and response surface methodology[J]. Science of the Total Environment, 2019, 690: 108-120. doi: 10.1016/j.scitotenv.2019.06.530 [11] WANG J, YANG H, ZHANG F, et al. Activated sludge under free ammonia treatment using gel immobilization technology for long-term partial nitrification with different initial biomass[J]. Process Biochemistry, 2020, 99: 282-289. doi: 10.1016/j.procbio.2020.07.025 [12] 周鑫, 孙海龙, 张泽乾. 响应面法在污水处理工艺优化中的应用[J]. 化学研究与应用, 2017, 29(6): 753-760. doi: 10.3969/j.issn.1004-1656.2017.06.001 [13] 国家环境保护总局. 水和废水监测分析方法[J]. 北京:中国环境科学出版社, 2002: 323-334. [14] ZENG W, LI L, YANG Y, et al. Nitritation and denitritation of domestic wastewater using a continuous anaerobic–anoxic–aerobic (A2O) process at ambient temperatures[J]. Bioresource Technology, 2010, 101(21): 8074-8082. doi: 10.1016/j.biortech.2010.05.098 [15] KHAN H, BAE W. Optimized operational strategies based on maximum nitritation, stability, and nitrite accumulation potential in a continuous partial nitritation reactor[J]. Process Biochemistry, 2016, 51(8): 1058-1068. doi: 10.1016/j.procbio.2016.04.012 [16] DUAN H, YE L, LU X, et al. Overcoming Nitrite Oxidizing Bacteria Adaptation through Alternating Sludge Treatment with Free Nitrous Acid and Free Ammonia[J]. Environmental Science & Technology, 2019, 53(4): 1937-1946. [17] CESCUT J, SEVERAC E, MOLINA-JOUVE C, et al. Optimizing pressurized liquid extraction of microbial lipids using the response surface method[J]. Journal of Chromatography A, 2011, 1218(3): 373-379. doi: 10.1016/j.chroma.2010.12.003 [18] MA B, WANG S, CAO S, et al. Biological nitrogen removal from sewage via anammox: Recent advances[J]. Bioresource Technology, 2016, 200: 981-990. doi: 10.1016/j.biortech.2015.10.074 [19] 陈旭. 生物膜法短程硝化反硝化脱氮的研究[D]. 南京: 南京理工大学, 2008. [20] 温海涛, 张新波, 宋姿, 等. 聚氨酯海绵载体填充率对MBBR脱氮的影响[J]. 中国给水排水, 2017, 33(15): 78-81. [21] ZHANG T, WANG B, LI X, et al. Achieving partial nitrification in a continuous post-denitrification reactor treating low C/N sewage[J]. Chemical Engineering Journal, 2018, 335: 330-337. doi: 10.1016/j.cej.2017.09.188 [22] 陈静雯. 短程硝化反硝化生物滤池脱氮效果研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [23] YAN J, HU Y Y. Partial nitrification to nitrite for treating ammonium-rich organic wastewater by immobilized biomass system[J]. Bioresource Technology, 2009, 100(8): 2341-2347. doi: 10.1016/j.biortech.2008.11.038 [24] 刘宗跃, 杨宏, 王少伦, 等. 硝化细菌工业化快速富集[J]. 化工学报, 2020, 71(8): 3722-3729. [25] SOROKIN D Y, VEJMELKOVA D, LÜCKER S, et al. Nitrolancea hollandica gen. nov., sp. nov., a chemolithoautotrophic nitrite-oxidizing bacterium isolated from a bioreactor belonging to the phylum Chloroflexi[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt_6): 1859-1865. doi: 10.1099/ijs.0.062232-0 [26] HAO R, LI S, LI J, et al. Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: Operating performance and bacterial community[J]. Bioresource Technology, 2013, 143: 178-186. doi: 10.1016/j.biortech.2013.06.001 [27] MIAO Y, LIAO R, ZHANG X, et al. Metagenomic insights into salinity effect on diversity and abundance of denitrifying bacteria and genes in an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Chemical Engineering Journal, 2015, 277: 116-123. doi: 10.1016/j.cej.2015.04.125