-
好氧颗粒污泥表面光滑、边界清晰、结构密实,且沉降性能良好[1-2],对污染物有良好的去除效果[3]。好氧颗粒污泥性能的影响因素包括有机负荷、表观上升气流速度、沉降时间、进水水质、碱度等[4-5]。好氧颗粒污泥的形成过程实际上是絮体污泥结构和性能的转变过程,可利用数学模型来进行解析。已有学者将研究数据与数学模型相结合,对好氧污泥颗粒化过程的影响因素[6-9]和运行参数[10-11],以及其相互关系进行了深入分析,为预测好氧污泥颗粒化的过程提供了思路。
好氧污泥颗粒化过程与微生物的增长、有机物的降解、溶解氧的消耗和氮等营养物质的迁移转化过程密不可分。可通过建立好氧颗粒污泥生物动力学模型来分析这些过程的反应速率及其相互影响关系。为准确有效地模拟计算各生物反应过程及其速率,除去初始营养物质和污泥浓度外,反应过程中各动力学参数和化学计量参数的确定显得尤为重要[12]。SU等[13-14]、NI等[15]、倪丙杰[16]、ZHOU等[17]对成熟稳定期好氧颗粒污泥的动力学参数和化学计量参数进行了测定,并以修订的活性污泥三号模型(Activated Sludge Modeling 3,ASM3)为基础,模拟分析了好氧颗粒污泥的增长过程后发现,ASM3模型模拟结果与实验结果相符合。然而,好氧污泥颗粒化是絮体污泥结构和性能的转变过程,污泥颗粒化过程中有关微生物增长的研究尚未见报道,且此过程中不同表观气速对动力学参数和化学计量参数的影响也尚不清楚。
反应器内形成螺旋上升的小尺度漩涡有利于好氧污泥颗粒化,而反应器内流态的发展与表观气速大小相关[18-19]。当反应器内的表观气速为2.0~4.0 cm·s−1时,可形成结构稳定的好氧颗粒污泥。当表观气速3.0 cm·s−1时,反应器内的漩涡尺度与2.0 cm·s−1时相比,量级变化均匀,有利于颗粒污泥的快速生长。基于此,为考察表观气速对动力学参数和化学计量参数的影响,本研究建立2个高径比120/6、结构相同的鼓泡序批式反应器(sequencing batch reactor, SBR),分别在表观气速为2.0 cm·s−1和3.0 cm·s−1的条件下培养好氧颗粒污泥,并对好氧颗粒污泥形成过程中(t=4 d、10 d、16 d、22 d、28 d、35 d)的动力学参数、化学计量参数、溶解氧(DO)、好氧速率(OUR)等参数的变化,以及化学需氧量(COD)、氨氮(NH4+-N)的降解过程进行检测,从而分析不同表观气速对好氧污泥颗粒化生物动力学过程的影响,利用修订ASM3模型作为基础模拟好氧颗粒污泥的增长过程,以期为进一步完善好氧污泥颗粒化模型提供参考。
表观气速对好氧污泥颗粒化过程中生化动力学模型参数变化的影响
Effect of superficial gas velocity on the variation of biochemical kinetic model parameter of the aerobic sludge granulation processes
-
摘要: 在高径比120/6,结构相同的2个SBR反应器中培养好氧颗粒污泥,并以修订ASM3模型为基础进行反应过程模拟,并分析表观气速(2.0 cm·s−1和3.0 cm·s−1)对好氧污泥颗粒化过程中动力学参数的影响。结果表明,反应器运行初期(t=4 d),表观气速2.0 cm·s−1时的半饱和系数KS、基质降解动力学参数vmax、污泥衰减系数Kd、污泥比增殖速率μH和污泥的产率系数YH均大于表观气速3.0 cm·s-1时的参数值,说明微生物在表观气速2.0 cm·s−1时更易适应环境变化。然而,随着初始好氧颗粒的形成(t=10~28 d),各参数值在表观气速3.0 cm·s−1时变得更高,尤其对KS、μH及Kd的影响更明显。修订的ASM3可模拟好氧颗粒污泥形成过程中溶解氧DO、好氧速率OUR、COD、NH4+-N的变化,说明模型预测的可行性和有效性。反应器内表观气速不同,影响了微生物生长的各动力学参数和反应器内的流态,从而导致污泥的特性和结构发生了变化,最终使得SV30/SV5、污泥粒径、污泥密实度D2和规则程度Dpf,COD和NH4+-N等参数出现差异。本研究结果可为运用数学模型反映生物反应器中参数变化以优化反应过程提供参考。Abstract: The aerobic granular sludge was cultivated in two bubble SBRs with same structure and a height-diameter ratio of 120/6. The simulation was established based on the revised ASM3 model, and the effect of different superficial gas velocity(SGV) (2.0 cm·s-1 and 3.0 cm·s-1) on the biological kinetic parameter of the aerobic sludge granulation was analyzed. The results showed that, at the initial stage( t= 4 d), the KS, vmax, Kd, μH and YH at the SGV of 2.0 cm·s-1 were higher than those at the SGV of 3.0 cm·s-1, indicating that microorganisms were more likely to adapt to the changes of the surrounding environment at the SGV of 2.0 cm·s-1. However, with the formation of initial aerobic granules ( t= 10~28 d), the values of parameters became higher at the SGV of 3.0 cm·s-1, especially for KS, μH and Kd. The revised ASM3 can simulate the variation of dissolved oxygen DO, aerobic rate OUR, COD and NH4+-N during the formation of aerobic granular sludge, indicating the feasibility and effectiveness of the model prediction. The difference of SGVs influenced the dynamic parameters of microbial growth and the flow pattern, resulting in the changes of the characteristics and structure of the sludge, finally, the differences in parameters such as SV30/SV5, sludge diameter, sludge density D2 and regular degree Dpf, COD and NH4+-N were observed. The results of this study can provide reference for optimizing the reaction process by using mathematical model to reflect the variation of parameters in bioreactor.
-
Key words:
- aerobic granular sludge /
- SBR /
- kinetic parameter /
- activated sludge modeling 3
-
表 1 20 ℃时主要的动力学参数和化学计量参数
Table 1. Main kinetic and stoichiometric parameters at 20 ℃
类型 参数 定义 数值 单位 文献 化学计量参数 YA XA的产率系数 0.24 g·g−1 [30] ηNOX 缺氧校正因子 0.55 — [15] fI 内源呼吸中XI的产率 0.20 g·g−1 [31] iN,BM XH、XA中N含量 0.07 g·g−1 [31] iN,XI XI中N含量 0.02 g·g−1 [31] YH,STO XH 基于 XSTO生长的产率系数 0.68 g·g−1 [30] 动力学参数 KSTO XSTO的半饱和系数 1.0 g·g−1 [31] $ {K_{{O_2}}} $ 半饱和系数$ {S_{{O_2}}} $ 0.2 g·m−3 [31] $ {K_{N{H_4}}} $ 的半饱和系数$ {S_{N{H_4}}} $ 0.01 g·m−3 [31] $ {K_{N{O_3}}} $ SNO的半饱和系数 0.5 g·m−3 [31] bSTO XSTO的好氧衰减速率 0.016 h−1 [15] $ {K_{{O_2},A}} $ 硝化菌的氧半饱和系数 0.5 g·m−3 [31] $ {K_{N{H_4},A}} $ XA氨氮半饱和系数 1 g·m−3 [15] μA XA的最大生长速率 0.05 h−1 估算值 bA XA的内源衰减速率 0.006 3 h−1 [15] 表 2 SGV为2.0 cm·s−1时的动力学参数和化学计量参数(20 ℃)
Table 2. Kinetic and stoichiometric coefficients at the SGV of 2.0 cm·s −1 (20 ℃)
参数 定义 运行周期 单位 备注 t=4 d t=10 d t=16 d t=22 d t=28 d t=35 d YH XH 的产率系数 0.35 0.77 0.77 0.76 0.92 0.47 g·g-1 实测值 Ks SS的半饱和系数 68.74 117.73 142.23 222.97 326.33 476.16 g·m-3 实测值 μH XH基于SS的最大生长速率 1.983 2.091 5 4.99 4.9 1.993 3 1.39 h-1 实测值 bH XH的好氧衰减速率 0.005 0.014 0.0147 0.015 0.022 0.048 d-1 实测值 kSTO XH的最大贮存速率常数 3.002 9.75 9.74 9.53 6.93 4.17 h-1 估算值 YSTO XH 贮存的产率系数 0.99 0.575 0.143 0.108 0.42 0.35 g·g-1 估算值 μH,STO XH 基于XSTO的最大生长速率 0.645 0.937 7 0.843 0.953 3 0.8 0.256 h-1 估算值 表 3 SGV为3.0 cm·s−1时的动力学参数和化学计量参数(20 ℃)
Table 3. Kinetic and stoichiometric coefficients at the SGV of 3.0 cm·s −1 (20 ℃)
参数 定义 运行周期 单位 备注 t=4 d t=10 d t=16 d t=22 d t=28 d t=35 d YH XH的产率系数 0.28 0.614 0.72 0.94 0.85 0.63 g·g-1 实测值 Ks SS的半饱和系数 42.84 109.14 146.3 292.2 299.34 617.39 g·m-3 实测值 μH XH基于SS的最大生长速率 1.98 3.53 3.66 3.824 2.27 1.34 h-1 实测值 bH XH的好氧衰减速率 0.006 0.008 7 0.021 0.026 0.043 0.12 d-1 实测值 kSTO XH的最大贮存速率 7.939 9.029 5.64 6.66 6.079 3.85 h-1 估算值 YSTO XH 贮存的产率系数 0.81 0.76 0.42 0.46 0.42 0.58 g·g-1 估算值 μH,STO XH 基于XSTO的最大生长速率 0.15 0.767 0.762 0.762 0.914 0.2 h-1 估算值 -
[1] TAY J H, LIU Q S, LIU Y. The effects of shear force on the formation, structure and metabolism of aerobic granules[J]. Applied Microbiology & Biotechnology, 2001, 57(1/2): 227-233. [2] LIU Z, LIU Y, ZHANG A, et al. Study on the process of aerobic granule sludge rapid formation by using the poly aluminum chloride (PAC)[J]. Chemical Engineering Journal, 2014, 250: 319-325. doi: 10.1016/j.cej.2014.04.025 [3] LIU J, LI J, WANG X D, et al. Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP[J]. Journal of Environmental Science, 2017, 51(1): 332-341. [4] LIU Y Q, TAY J H. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate[J]. Water Research, 2015, 80: 256-266. doi: 10.1016/j.watres.2015.05.015 [5] DAHALAN F A, ABDULLAH N, YUZIR A, et al. A proposed aerobic granules size development scheme for aerobic granulation process[J]. Bioresource Technology, 2015, 181: 291-296. doi: 10.1016/j.biortech.2015.01.062 [6] 张鸿雁, 张志政, 王元. 流体力学[M]. 北京: 科学出版社, 2004. [7] LIU Y, WANG Z W, LIU Y Q, et al. A generalized model for settling velocity of aerobic granular sludge[J]. Biotechnology Progress, 2005, b,21: 621-626. [8] 周丹, 张涛. 颗粒污泥沉降动力学模型研究[J]. 环境污染与防治, 2008, 30(3): 36-38. doi: 10.3969/j.issn.1001-3865.2008.03.011 [9] YANG S F, LIU Q S, TAY J H, et al. Growth kinetics of aerobic granules developed in sequencing batch reactors[J]. Letter Applied Microbiology, 2004, 38: 106-112. doi: 10.1111/j.1472-765X.2003.01452.x [10] SU K Z, YU H Q. Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater[J]. Environmental Science & Technology, 2005, 39: 2818-2828. [11] NI B J, YU H Q. Mathematical modeling of aerobic granular sludge: A review[J]. Biotechnology Advances, 2010, 28: 895-909. doi: 10.1016/j.biotechadv.2010.08.004 [12] 施汉昌, 邱勇. 污水生物处理的数学模型与应用[M]. 北京: 中国建筑工业出版社, 2014. [13] SU K Z, YU H Q. A generalized model of aerobic granule-based sequencing batch reactor I: Model development[J]. Environmental Science & Technology, 2006, a,40: 4703-4708. [14] SU K Z, YU H Q. A generalized model for aerobic granule-based sequencing batch reactor II: Parametric sensitivity and model verification[J]. Environmental Science & Technology, 2006, b,40: 4709-4713. [15] NI B J, YU H Q, SUN Y J. Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules[J]. Water Research, 2008, 42: 1583-1594. doi: 10.1016/j.watres.2007.11.010 [16] 倪丙杰. 好氧颗粒污泥的培养过程、作用机制及数学模拟[D]. 合肥: 中国科学技术大学. 2009. [17] ZHOU M, GONG J Y, YANG C Z, et al. Simulation of the performance of aerobic granular sludge SBR using modified ASM3 model[J]. Bioresource Technology, 2013, 127: 473-481. doi: 10.1016/j.biortech.2012.09.076 [18] FAN W W, YUAN L J, LI Y L. CFD simulation of flow pattern in a bubble column reactor for forming aerobic granules and its development[J]. Environmental Technology, 2019, 40(27): 3652-3667. doi: 10.1080/09593330.2018.1484522 [19] FAN W W, YUAN L J, QU X Y. CFD simulation of hydrodynamic behaviors and aerobic sludge granulation in a stirred tank with lower ratio of height to diameter[J]. Biochemical Engineering Journal, 2018, 137: 78-94. doi: 10.1016/j.bej.2018.05.012 [20] 李永林. 气升流速变化对SBR污泥颗粒化的作用及机理[D]. 西安: 西安建筑科技大学, 2017. [21] 国家环保局. 水和废水监测分析方法 [M]. 北京: 中国环境科学出版社, 2005. [22] 于静洁, 马超, 李莉等. ASM1中化学计量系数与动力学参数的测定[J]. 环境污染与防治, 2006, 28(5): 334-336. doi: 10.3969/j.issn.1001-3865.2006.05.005 [23] HENZE M, GUJER W, MINO T, et. al. . Activated Sludge Models. ASM1, ASM2, ASM2d and ASM3. London: IWA Publishing, 2000. [24] 关梦龙, 黄钧, 毕京芳等. 好氧颗粒污泥代谢高浓度有机废水的数学模拟[J]. 应用与环境生物学报, 2014, 20(6): 1063-1069. [25] XAVIER J B, PICIOREANU C, VAN LOOSDRECHT MCM. A framework for multi dimensional modeling of activity and structure of multi species biofilms[J]. Environmental Microbiology, 2005, 7: 1085-1103. doi: 10.1111/j.1462-2920.2005.00787.x [26] RRICHERT P. AQUASIM 2.0-Tutorial [M]. Technical Report, Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Dübendorf, Switzerland, 1998. [27] RRICHERT P. AQUASIM 2.0-User Manual [M]. Technical Report, Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Dübendorf, Switzerland, 1998. [28] BEUN J J, HEIJNEN J J, VAN LOOSDRECHT M C M. N-removal in a granular sludge sequencing batch airlift reactor[J]. Biotechnology, 2001, 75: 82-91. [29] 刘喆. 好氧污泥混凝强化造粒的操作控制条件及其作用机制[D]. 西安: 西安建筑科技大学, 2015. [30] SIN G, GUISASOLA A, PAUW D J W D, et al. A new approach for modelling simultaneous storage and growth processes for activated sludge systems under aerobic conditions[J]. Biotechnology and Bioengineering, 2005, 92(5): 600-613. doi: 10.1002/bit.20741 [31] GUJER W, HENZE M, MINO T, et al. Activated sludge model No. 3[J]. Water Science and Technology, 1999, 39(1): 183-193. doi: 10.2166/wst.1999.0039