-
随着城市化和工业化进程的加快,每年都会产生大量的有机废弃物[1-2]。厌氧消化不仅可以有效降解有机废弃物,还可以将所回收沼气作为可再生能源加以利用[3]。因此,它被认为是一种环境友好型技术。基质特性、pH、碳氮比、含固率、混合效率等是决定厌氧消化性能的主要因素[4-5]。相对于低固厌氧消化,高固厌氧消化(High solid anaerobic digestion, HSAD)具有能耗低、沼液沼渣产生量少、单位容积处理量大等优点[6]。Kompogas厌氧发酵工艺作为一种卧式单轴推流式生物发酵工艺,适于各种高含固物料的处理,沼液产生量为湿式厌氧工艺的1/10左右,系统稳定不易发生短流,可满足我国有机废弃物产生量大、有机含量高的要求。但是,传统高固厌氧消化的甲烷产量相对较低。其主要原因是,高固厌氧消化的基质是一种剪切稀化和触变性的非牛顿流体[7]。这就导致在系统中容易发生短流、混合不均等现象,造成氨氮抑制和VFA积累,严重时还引发“酸中毒”现象[1, 8]。
一般来说,混合可以使微生物与基质实现有效接触和分散,从而在很大程度上影响HSAD的流场分布、死区、剪切速率等水力学特性。考虑到功率消耗,HSAD系统通常更倾向于机械混合而非气体混合[9]。目前,已经有较多针对优化混合策略的研究[3-4, 9-11]。例如,RASOULI等[10]通过计算流体力学(Computational Fluid Dynamics, CFD)研究了不同含固率(2.5%~12.1%)下的水力学行为,发现混合强度的合理设定对反应器性能很重要。WU[9]开发了一种HSAD计算流体力学模型,发现机械导流管比泵外循环的运行效率更高。LEONZIO等[12]在工业规模下的厌氧消化器中模拟了含固率为12%的物料流动行为,结果表明进料口侧面安装是最佳的反应器构型。
能量评价也是评估高固厌氧消化性能的重要指标之一。CUI等[1]基于减能降耗的目的,认为配置双叶式搅拌桨比螺带式搅拌桨更优。混合能量水平(Mixing energy level, MEL)也用于不同搅拌桨构型的混合效率评价。WU等[13]比较了6种不同类型搅拌桨的性能,发现在达到相同的物料均一程度条件下,2层强化型搅拌桨需要的能量最低。ZHANG等[3]分析了连续混合和半连续混合厌氧消化反应器的效率,发现半连续混合反应器的效率为74.4%,高于连续混合反应器(66.9%)。然而,已有研究多针对螺旋桨优化,对斜叶型搅拌桨的优化鲜有报道。
本研究针对Kompogas卧式厌氧发酵罐不同转速和桨叶角度的斜叶型搅拌桨在流动特性上的影响开展研究;并对不同工况下的混合效率和能量输入进行探究,以对HSAD设计中的搅拌桨构型优化提供参考。
基于CFD的卧式高固厌氧消化混合策略优化
Optimizing mixing strategy of horizontal high solid anaerobic digestion based on CFD
-
摘要: 高固厌氧消化(High solid anaerobic digestion,HSAD)在实际生产运行中,与传统厌氧消化相比,存在混合效果差、能量转换效率低等缺点。基于计算流体力学(Computational Fluid Dynamics,CFD)研究了不同桨叶角度的搅拌桨对生产规模反应器混合效率的影响。并根据不同工况下的能量转换效率和能量消耗,确定了最佳工况。结果表明,随着桨叶角度从30°增加到60°,径向和轴向混合均有明显改善,但在高转速下的改善效果不明显。考虑到实际工程应用,建议采用低转速和大桨叶角度。因此,建议反应器采用桨叶角度为60°的搅拌桨,转速为1 r·min−1(净能量产出为0.023 GJ·d−1·m−3)。本研究结果可为实际工程中HSAD反应器的混合策略提供参考。Abstract: High solid anaerobic digestion (HSAD) has the shortcomings of poor mixing effect and low energy conversion efficiency compared to traditional anaerobic digestion in actual production operation. In this study, the effects of different blade angle impellers on mixing efficiency at full-scale were studied based on Computational Fluid Dynamics (CFD). Then, the optimal working conditions were revealed according to energy conversion and energy consumption. Results indicated that both radial and axial mixing were remarkably improved as blade angle increased from 30° to 60°, but improved gently at high rotating speed. Besides, considering energy generation in actual engineering applications, low rotating speed and large blade angle were recommended. Thus, the reactor with 60° blade angle impellers operating at 1 r·min−1 was recommended (with the net energy of 0.023 GJ·d−1·m−3). This study could provide a credible reference for mixing strategies of HSAD digester in practical engineering.
-
-
[1] CUI M H, ZHENG Z Y, YANG M, et al. Revealing hydrodynamics and energy efficiency of mixing for high-solid anaerobic digestion of waste activated sludge[J]. Waste Management, 2021, 121: 1-10. doi: 10.1016/j.wasman.2020.11.054 [2] 罗景阳, 邵钱祺, 王凤, 等. 碳基材料对有机废弃物厌氧消化的影响及作用机制研究进展[J]. 同济大学学报(自然科学版), 2021, 49(12): 1701-1709. doi: 10.11908/j.issn.0253-374x.21312 [3] ZHANG J X, MAO L W, NITHYA K, et al. Optimizing mixing strategy to improve the performance of an anaerobic digestion waste-to-energy system for energy recovery from food waste[J]. Applied Energy, 2019, 249: 28-36. doi: 10.1016/j.apenergy.2019.04.142 [4] HURTADO F J, KAISER A S, ZAMORA B. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion[J]. Water Research, 2015, 71: 282-293. doi: 10.1016/j.watres.2014.11.053 [5] GHANIMEH S, KHALIL C A, MOSLEH C B, et al. Optimized anaerobic-aerobic sequential system for the treatment of food waste and wastewater[J]. Waste Management, 2018, 71: 767-774. doi: 10.1016/j.wasman.2017.06.027 [6] ABID M, WU J, SEYEDSALEHI M, et al. Novel insights of impacts of solid content on high solid anaerobic digestion of cow manure: Kinetics and microbial community dynamics[J]. Bioresource Technology, 2021, 333(3): 125205. [7] HU Y Y, ZHENG X H, ZHANG S H, et al. Investigation of hydrodynamics in high solid anaerobic digestion by particle image velocimetry and computational fluid dynamics: Role of mixing on flow field and dead zone reduction[J]. Bioresource Technology, 2020, 319: 124-130. [8] 齐利格娃, 李伟, 高金华, 等. 污泥高含固厌氧消化研究进展[J]. 中国给水排水, 2021, 37(18): 14-19. [9] WU B X. CFD simulation of mixing in egg-shaped anaerobic digesters[J]. Water Research, 2010, 44(5): 1507-1519. doi: 10.1016/j.watres.2009.10.040 [10] RASOULI M, MOUSAVI S M, AZARGOSHASB H, et al. CFD simulation of fluid flow in a novel prototype radial mixed plug-flow reactor[J]. Journal of Industrial and Engineering Chemistry, 2018, 64: 124-133. doi: 10.1016/j.jiec.2018.03.008 [11] DING J, WANG X, ZHOU X F, et al. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production[J]. Bioresource Technology, 2010, 101(18): 7016-7024. [12] LEONZIO G. Study of mixing systems and geometric configurations for anaerobic digesters using CFD analysis[J]. Renewable Energy, 2018, 123: 578-589. doi: 10.1016/j.renene.2018.02.071 [13] WU B X. CFD simulation of mixing for high-solids anaerobic digestion[J]. Biotechnology and Bioengineering, 2012, 109(8): 2116-2126. doi: 10.1002/bit.24482 [14] MOELLER G, TORRES L G. Rheological characterization of primary and secondary sludges treated by both aerobic and anaerobic digestion[J]. Bioresource Technology, 1997, 61(3): 207-211. doi: 10.1016/S0960-8524(97)00061-8 [15] TERASHIMA M, GOEL R, KOMATSU K, et al. CFD simulation of mixing in anaerobic digesters[J]. Bioresource Technology, 2009, 100(7): 2228-2233. doi: 10.1016/j.biortech.2008.07.069 [16] BAUDEZ J C, SLATTER P, ESHTIAGHI N. The impact of temperature on the rheological behaviour of anaerobic digested sludge[J]. Chemical Engineering Journal, 2013, 215(2): 182-187. [17] HU Y Y, WU J, PONCIN S, et al. Flow field investigation of high solid anaerobic digestion by Particle Image Velocimetry (PIV)[J]. Science of the Total Environment, 2018, 626: 592-602. doi: 10.1016/j.scitotenv.2018.01.111 [18] WU B X. CFD investigation of turbulence models for mechanical agitation of non-Newtonian fluids in anaerobic digesters[J]. Water Research, 2011, 45(5): 2082-2094. doi: 10.1016/j.watres.2010.12.020 [19] WEI P, MUDDE R F, UIJTTEWAAL W, et al. Characterising the two-phase flow and mixing performance in a gas-mixed anaerobic digester: Importance for scaled-up applications[J]. Water Research, 2019, 149: 86-97. doi: 10.1016/j.watres.2018.10.077 [20] HU Y Y, WU J, LI H Z, et al. Study of an enhanced dry anaerobic digestion of swine manure: performance and microbial community property[J]. Bioresource Technology, 2019, 282: 353-360. doi: 10.1016/j.biortech.2019.03.014 [21] ENTSAR N M. Mixing Process of Apple Juice Concentrate[J]. International Journal of Nutrition and Food Sciences, 2016, 5(1): 1-6. [22] ZHANG Y, YU G R, YU L, et al. Computational fluid dynamics study on mixing mode and power consumption in anaerobic mono- and co-digestion[J]. Bioresource Technology, 2016, 203: 166-172. doi: 10.1016/j.biortech.2015.12.023 [23] ZHAI X D, KARIYAMA I D, WU B X. Investigation of the effect of intermittent minimal mixing intensity on methane production during anaerobic digestion of dairy manure[J]. Computers and Electronics in Agriculture, 2018, 155: 121-129. doi: 10.1016/j.compag.2018.10.002 [24] LEBRANCHU A, DELAUNAY S, MARCHAL P, et al. Impact of Shear Stress and Impeller Design on the Production of Biogas in Anaerobic Digesters[J]. Bioresource Technology, 2017, 245: 1139-1147. doi: 10.1016/j.biortech.2017.07.113 [25] VESVIKAR M S, AL-DAHHAN M. Flow pattern visualization in a mimic anaerobic digester using CFD[J]. Biotechnology and Bioengineering, 2010, 89(6): 719-732. [26] WU B X, CHEN S L. CFD simulation of non-Newtonian fluid flow in anaerobic digesters[J]. Biotechnology and Bioengineering, 2008, 99(3): 700-711. doi: 10.1002/bit.21613