-
微量有机污染物(micro organic pollutants, MOPs),如药物与个人护理品、内分泌干扰物等,具有生物累积性、环境持久性和难降解性,在微量浓度下即会威胁环境和人群健康。臭氧(O3)已被广泛应用于水深度处理中[1-2],可高效降解大多数MOPs[3-4],而O3与溶液的接触方式是其应用的关键。传统的鼓泡反应器通过底部的O3曝气使O3与水充分混合,具有操作便捷、安装方便等优点,但曝气头表面的微孔易堵塞,需经常清洗,同时还会出现泡沫、液泛等问题。此外,混合塔也被广泛采用,其将水从高处喷下形成雾状,O3气体从塔下方通入,与水流逆行并充分接触,这种方式有利于O3传质,但该设备成本高,能量损失大。O3膜接触器是一种新型O3/溶液接触装置。其基于带微孔的中空纤维膜管,通过“外液内气”方式,使得O3在浓度差作用下以无泡方式从气相扩散至液相[5]。相较于传统O3接触方式,O3膜接触器具有传质效率高、O3分布均匀、占地面积小、能耗低等优点,可有效避免泡沫、液泛等问题,应用前景广阔[6-7]。同时,其亦存在膜易被污染、设备结构复杂等问题,应用中需予以关注。
O3工艺存在的重要问题是无法降解耐O3 MOPs(O3 resistant MOPs, OR-MOPs),且出水中残余O3会影响后续工艺。O3的紫外(UV)摩尔吸光系数高(约3 000 L·(mol·cm)–1)[8],在UV辐照下可被快速光解并生成羟基自由基(HO·),过程见式(1)~式(7)[9−10]。HO·具有强氧化性,可降解绝大多数MOPs(包括OR-MOPs)。因此,在O3氧化后增加UV辐照,可将残余O3转化为HO·,强化OR-MOPs降解,提高O3利用率。
目前,有关膜接触O3-UV联用的研究鲜有报道,而且用于开展相关研究的实验装置也并不多见。细管流光反应系统是新型的UV装置。它具有剂量测定准确、样品量少、剂量率均一等优点[11]。该装置过流式的运行模式方便与O3膜接触器进行连接,以开展膜接触O3-UV联用的相关研究。
本研究搭建了O3膜接触器与细管流光反应系统相结合的膜接触O3-UV实验装置,以探究O3膜接触器中各因素对液相O3浓度的影响,并准确测定细管流光反应系统输出的辐照剂量;之后,以一种耐O3氧化且广泛应用于临床治疗的非甾体抗炎药—布洛芬为代表性OR-MOP [12-13],用以考察膜接触O3-UV联用对水中OR-MOPs的强化降解效果。通过分析O3利用率、pH对联用工艺降解MOPs的影响及各降解途径的贡献比,以期为工艺应用与优化提供参考。
膜接触臭氧-紫外联用强化降解耐臭氧微量有机污染物
Combination of membrane contact ozone and ultraviolet processes for enhanced degradation of ozone-resistant micro organic pollutants
-
摘要: 臭氧(O3)已被广泛应用于水深度处理中,但其无法有效降解耐O3微量有机污染物(OR-MOPs)。针对OR-MOPs的强化降解,搭建了由O3膜接触器和细管流光反应系统组成的膜接触O3-紫外(UV)实验装置,并对O3膜接触器的处理效果进行评估。结果表明,随着气相O3质量浓度增加、溶液流量和pH的降低,液相O3质量浓度升高;磷酸盐对O3溶解没有影响;测得细管流光反应系统的UV剂量率为4.56 × 10−4 Einstein·m−2·s−1。当液相O3质量浓度为1.0和2.0 mg·L−1时,膜接触O3-UV联用对代表性OR-MOP—布洛芬的去除率分别为63.2%和82.9%,比单独O3氧化增加了38.1%和44.5%,且O3被完全利用。布洛芬的降解效果随pH升高而提升,当液相O3质量浓度为1.0 mg·L−1、pH = 9.0时,布洛芬的整体去除率最高(77.2%);在布洛芬各主要降解途径中,羟基自由基(HO·)氧化的贡献比达90%以上。膜接触O3-UV联用可强化OR-MOPs的降解并提高O3利用率,可为O3在水深度处理中的应用提供新方法。
-
关键词:
- 膜接触臭氧 /
- 紫外 /
- 臭氧氧化 /
- 高级氧化 /
- 耐臭氧微量有机污染物
Abstract: Ozone (O3) has been widely used in advanced water treatment but can hardly degrade O3 resistant micro organic pollutants (OR-MOPs). For enhanced degradation of OR-MOPs, a membrane contact O3-UV experimental system was developed by combining an O3 membrane contactor (OMC) and a mini-fluidic photoreaction system (MFPS). The performance of OMC was evaluated, showing that the dissolved O3 increases with the rise of gaseous O3 mass concentration, or decreases with the solution flow rate and pH; phosphate has no effect on the O3 dissolution; photon fluence rate of MFPS was determined as 4.56×10−4 Einstein·m−2·s−1. By using the combination of membrane contact O3 and UV processes, the removal efficiencies of ibuprofen, a representative OR-MOP, were 63.2% and 82.9% at aqueous O3 mass concentrations of 1.0 and 2.0 mg·L−1, which were 38.1% and 44.5% higher than those by sole ozonation, respectively, with O3 fully utilized. The degradation of ibuprofen was enhanced as the pH increased, and the highest removal efficiency (77.2%) of ibuprofen was achieved at aqueous O3 mass concentration of 1.0 mg·L−1 and pH = 9.0. Hydroxyl radical (HO•) oxidation contributed more than 90% of the main degradation pathways of ibuprofen. This study demonstrated that the combination of membrane contact O3 and UV processes could enhance the degradation of OR-MOPs and improve the O3 utilization efficiency, which provided a new method for application of O3 in water advanced treatment.-
Key words:
- membrane contact O3 /
- UV /
- ozonation /
- advanced oxidation /
- O3 resistant micro organic pollutants
-
-
[1] VOLKER J, STAPF M, MIEHE U, et al. Systematic review of toxicity removal by advanced wastewater treatment technologies via ozonation and activated carbon[J]. Environmental Science & Technology, 2019, 53(13): 7215-7233. [2] MESTANKOVA H, PARKER A M, BRAMAZ N, et al. Transformation of contaminant candidate list (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: Assessment of biological effects[J]. Water Research, 2016, 93(15): 110-120. [3] LIU Z, DEMEESTERE K, HULLE S V. Enhanced ozonation of trace organic contaminants in municipal wastewater plant effluent by adding a preceding filtration step: Comparison and prediction of removal efficiency[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(17): 14661-14668. doi: 10.1021/acssuschemeng.9b02571 [4] TAKASHINA T A, LEIFELD V, ZELINSKI D W, et al. Application of response surface methodology for coffee effluent treatment by ozone and combined ozone/UV[J]. Ozone Science & Engineering, 2018, 40(4): 293-304. [5] WENTEN I G, JULIAN H, PANJAITAN N T. Ozonation through ceramic membrane contactor for iodide oxidation during iodine recovery from brine water[J]. Desalination, 2012, 306(18): 29-34. [6] SCHMITT A, MENDRET J, ROUSTAN M, et al. Ozonation using hollow fiber contactor technology and its perspectives for micropollutants removal in water: A review[J]. Science of the Total Environment, 2020, 729: 138664. doi: 10.1016/j.scitotenv.2020.138664 [7] 张勇, 王军, 侯得印, 等. 膜接触反应器臭氧传质及其对模拟印染废水的降解[J]. 环境工程学报, 2017, 11(8): 4453-4458. doi: 10.12030/j.cjee.201607215 [8] VON SONNTAG C, VON GUNTEN U. Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications[M]. London: IWA Publishing, 2012. [9] PEYTON G R, GLAZE W H. Destruction of pollutants in water with ozone on combination with ultraviolet-radiation. 3. Photolysis of aqueous ozone[J]. Environmental Science & Technology, 1988, 22(7): 761-767. [10] BELTRAN F J, ENCINAR J M, GONZALEZ J F. Industrial wastewater advanced oxidation. Part 2. Ozone combined with hydrogen peroxide or UV radiation[J]. Water Research, 1997, 31(10): 2415-2428. doi: 10.1016/S0043-1354(97)00078-X [11] LI M K, QIANG Z M, HOU P, et al. VUV/UV/chlorine as an enhanced advanced oxidation process for organic pollutant removal from water: Assessment with a novel mini-fluidic VUV/UV photoreaction system (MVPS)[J]. Environmental Science & Technology, 2016, 50(11): 5849-5856. [12] LOOS R, LOCORO G, CONTINI S. Occurrence of polar organic contaminants in the dissolved water phase of the Danube River and its major tributaries using SPE-LC-MS2 analysis[J]. Water Research, 2010, 44(7): 2325-2335. doi: 10.1016/j.watres.2009.12.035 [13] ANDINI S, BOLOGNESE A, FORMISANO D, et al. Mechanochemistry of ibuprofen pharmaceutical[J]. Chemosphere, 2012, 88(5): 548-553. doi: 10.1016/j.chemosphere.2012.03.025 [14] 田岳林. 无机膜与有机膜分离技术应用特性比较研究[J]. 过滤与分离, 2011, 21(1): 45-48. doi: 10.3969/j.issn.1005-8265.2011.01.015 [15] ATCHARYAWUT S, PHATTARANAWIK J, LEIKNES T, et al. Application of ozonation membrane contacting system for dye wastewater treatment[J]. Separation & Purification Technology, 2009, 66(1): 153-158. [16] 税奕瑜. 聚四氟乙烯中空纤维膜臭氧曝气的传质过程研究[D]. 成都: 西南石油大学, 2017. [17] LI M K, LI W T, WEN D, et al. Micropollutant degradation by the UV/H2O2 process: Kinetic comparison among various radiation sources[J]. Environmental Science & Technology, 2019, 53(9): 5241-5248. [18] BADER H. Determination of ozone in water by the indigo method: A submitted standard method[J]. Ozone Science & Engineering, 1982, 4(4): 169-176. [19] ZHANG Y, LI K L, WANG J, et al. Ozone mass transfer behaviors on physical and chemical absorption for hollow fiber membrane contactors[J]. Water Science & Technology, 2017, 76(6): 2017254. [20] STYLIANOU S K, KOSTOGLOU M, ZOUBOULIS A I. Ozone mass transfer studies in a hydrophobized ceramic membrane contactor: Experiments and analysis[J]. Industrial & Engineering Chemistry Research, 2016, 55(28): 7587-7597. [21] EGOROVA G V, VOBLIKOVA V A, SABITOVA L V, et al. Ozone solubility in water[J]. Moscow University Chemistry Bulletin, 2015, 70(5): 207-210. doi: 10.3103/S0027131415050053 [22] RAO Y F, CHU W. A new approach to quantify the degradation kinetics of linuron with UV, ozonation and UV/O3 processes[J]. Chemosphere, 2009, 74(11): 1444-1449. doi: 10.1016/j.chemosphere.2008.12.012 [23] ELOVITZ M S, VON GUNTEN U, KAISER H P. Hydroxyl radical/ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity, and DOM properties[J]. Ozone Science & Engineering, 2000, 22(2): 123-150. [24] HUBER M M, CANONICA S, PARK G Y, et al. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes[J]. Environmental Science & Technology, 2003, 37(5): 1016-1024. [25] ELOVITZ M S, VON GUNTEN U. Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept[J]. Ozone:Science & Engineering, 1999, 21(3): 239-260. [26] ELOVITZ M S, VON GUNTEN U, KAISER H P. Hydroxyl radical/ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity, and DOM properties[J]. Ozone:Science & Engineering, 2000, 22(2): 123-150.