-
在人口增长、经济发展和全球气候变化等因素的协同驱动下,饮用水安全问题已成为全世界共同面临的严峻挑战。然而,截止2020年,全世界仍有7.71亿人无法获得水质安全的饮用水,而这一问题在农村地区尤为突出[1-2]。在我国,目前仍有1.5亿农村人口无法获得集中供水,部分地区村民仅能利用水质不稳定的分散式水源实现人饮[3-4]。其中,在我国西北农村地区,长期存在资源性、水质性缺水等问题,部分地区仍以雨水作为主要的饮用水水源[5]。由于当地基础设施较差、卫生条件落后,集雨窖水缺乏保护和处理措施,普遍存在浊度、色度、微生物和有机物的超标问题[6],对当地人民的身体健康构成潜在威胁。因此,开发适配的分散式水源净化技术对于农村地区的饮用水安全保障具有重要意义。
超滤是第3代饮用水净化工艺的核心技术之一[7],能高效地去除分散式水源中的悬浮颗粒物、胶体、大分子有机物和微生物等物质,是保障农村饮用水水质安全的重要手段。但是,常规超滤工艺存在构建复杂、清洗维护频繁及运行能耗高等问题,难以在偏远、经济落后的农村地区广泛应用[8]。针对上述问题,瑞士联邦水质科学技术研究所开发了重力流超滤技术(gravity-driven membrane,GDM)。该技术以水自重产生的跨膜压驱动,无需外部动力即可持续运行[9]。在GDM的膜分离过程中,水体中的颗粒物、胶体和微生物被截留于膜表面形成滤饼层,其中富集的微生物可通过生物降解、捕食等途径诱导滤饼层产生非均相的孔隙结构,使GDM出水通量可保持长期恒定,在无清洗条件下即可稳定运行[10]。相比于常规超滤,GDM低能耗、低维护等技术特点与农村地区社会环境和饮用水安全保障需求高度契合,已在部分农村地区开展应用[11]。有研究表明,GDM 在对不同的分散式水源(雨水、水塘水、溪沟水、河水等)进行处理时,均可产生稳定通量[12-15]。因此,以上研究仅对GDM处理不同水源产生稳定通量的过程机制进行了深入的讨论,但由于GDM运行时间相对较短(30~150 d),无法对其出水通量的后续变化趋势和运行情况做出进一步的研判。
一直以来,膜污染是膜分离工艺中亟待解决的关键问题,是限制其实际工程长期运行净化效果和运行效能的重要因素。GDM在无清洗、无维护条件下长期运行时,膜表面污染物的大量累积对其运行潜力和净水效能的影响效应尚未明确。同时,在较低的跨膜压下产生稳定的出水通量是GDM工艺的核心优势,然而其稳定通量的持续时间仍未可知。由于GDM是一种新型的水处理工艺,其运行周期的判断标准及适用的清洗方式尚未界定。针对上述问题,本研究拟通过研究GDM长期运行的膜通量和出水水质变化,明确GDM的长期净水效果,揭示出水通量的长期动态变化规律及其关键影响因素,阐明不同清洗方式对GDM运行效能的恢复机制,以期为建立GDM长期稳定运行和维护机制以及在农村地区推广应用提供参考依据。
重力流超滤长期净水效果评价及其清洗方法
Evaluation of long-term water purification efficiency and cleaning method of gravity-driven membrane filtration
-
摘要: 为明确重力流超滤工艺(gravity-driven membrane,GDM)在无清洗、无维护条件下长期运行的通量变化特征及其对雨水的净水效果,对GDM装置进行了为期240 d的运行。结果表明:长期运行的GDM装置可分为3个时期,分别为启动期(0~8 d)、稳定期(9~150 d)和下降期(151~240 d)。GDM装置运行9 d后通量即可保持稳定,在无清洗条件下,最大稳定运行时间可达150 d,其平均通量为(8.85±0.74) L·(m2·h)−1。此外,不同的进水水质因子,包括溶解氧(dissolved oxygen,DO)、pH、总有机碳(total organic carbon,TOC)和菌落总数,是影响稳定通量值的关键因素,其影响效应在稳定期和下降期均表现出不同规律。在稳定期内,GDM运行的出水水质较好,雨水中的典型污染物(浊度、色度、TOC和菌落总数)经净化后均达到我国《生活饮用水卫生标准》。而在下降期(151~240 d),膜通量降低至5.37 L·(m2·h)−1,且GDM出水中菌落总数存在超标现象,因此,建议在运行150 d后对GDM进行清洗维护,以恢复膜通量和稳定净水效果。此外,通过表面清洗和手动反冲洗即可恢复GDM装置80%的膜通量。综上所述,GDM可稳定净化雨水,长期运行后简单清洗即可恢复大部分膜通量,适用于在我国农村地区推广应用。Abstract: To understand the characteristics of flux change and rainwater purification efficiency of the gravity-driven membrane (GDM) filtration process in long-term operation without any cleaning and maintenance, the GDM was operated for 240 days. The results showed that three different periods occurred during the long-term operation of the GDM, namely, the start-up period (0~8 d), the stabilization period (9~150 d) and the decline period (151~240 d). The permeate flux could stabilize at (8.85±0.74) L·(m2·h)−1 after 9 days operation, and the maximum stable operation time could reach 150 days without any cleaning and washing procedures. In addition, the influent water quality factors, including DO, pH, TOC and total plate counts, were the key factors affecting the stable flux, and their effects showed different patterns in both the stable and decline periods. During the stable period, the GDM setup could greatly remove the typical pollutants (including turbidity, color, TOC and total plate counts) in the rainwater, the effluent water quality met Chinese drinking water standards. However, during the decline period (151~240 days), the permeate flux decreased to 5.37 L·(m2·h)−1 and the total plate counts in the permeate could exceed the standards, so it was recommended to clean and maintain the GDM at the end of stable period (about 150 days) to recover the permeate as well as the function of water purification. Meanwhile, surface cleaning and manual backwashing could recover 80% of permeate flux. Accordingly, this study showed that GDM could stably purify the rainwater, and the permeate flux could recover by simple cleaning after long-term operation, which was suitable for the application in rural areas of China.
-
-
[1] 朱晓红, 孙远. 全球亟待解决的用水问题[J]. 水利水电快报, 2009, 30(3): 1-3. doi: 10.3969/j.issn.1006-0081.2009.03.001 [2] 李洪兴. 我国农村饮水安全保障体系构建的研究[D]. 中国疾病预防控制中心, 2015. [3] TRUSLOVE J, COULSON A, NHLEMA M, et al. Reflecting SDG 6.1 in rural water supply tariffs: Considering ‘affordability’ versus ‘operations and maintenance costs’ in Malawi[J]. Sustainability, 2020, 12(2): 744. doi: 10.3390/su12020744 [4] 康庄, 王世进. 我国农村饮用水安全的现状及保障对策初探[Z]. 南京: 20084. [5] 张国珍, 赵伟娜, 何春生, 等. 黄土塬地区集雨窖水水源地优选[J]. 生态学杂志, 2010, 29(4): 749-753. [6] 赵伟. 农村饮用水安全存在的问题及解决措施[J]. 农业科技与信息, 2021(8): 82-83. [7] 乔国亮. 雨水污染物负荷在窖水中的迁移转化规律研究[Z]. 2015. [8] CHU C, RYBERG E C, LOEB S K, et al. Water disinfection in rural areas demands unconventional solar technologies[J]. Accounts of Chemical Research. 2019, 52(5): 1187-1195. [9] PETER-VARBANETS M, GUJER W, PRONK W. Intermittent operation of ultra-low pressure ultrafiltration for decentralized drinking water treatment[J]. Water Research. 2012, 46(10): 3272-3282. [10] PETER-VARBANETS M, MARGOT J, TRABER J, et al. Mechanisms of membrane fouling during ultra-low pressure ultrafiltration[J]. Journal of Membrane Science. 2011, 377(1/2): 42-53. [11] PETER-VARBANETS M, HAMMES F, VITAL M, et al. Stabilization of flux during dead-end ultra-low pressure ultrafiltration[J]. Water Research. 2010, 44(12): 3607-3616. [12] DING A, WANG J, LIN D, et al. Effect of PAC particle layer on the performance of gravity-driven membrane filtration (GDM) system during rainwater treatment[J]. Environmental Science:Water Research & Technology, 2018, 4(1): 48-57. [13] LEE S, BADOUX G O, WU B, et al. Enhancing performance of biocarriers facilitated gravity-driven membrane (GDM) reactor for decentralized wastewater treatment: Effect of internal recirculation and membrane packing density[J]. Science of the Total Environment, 2021, 762: 144104. doi: 10.1016/j.scitotenv.2020.144104 [14] AKHONDI E, WU B, SUN S, et al. Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: Linking biofouling layer morphology with flux stabilization[J]. Water Research, 2015, 70: 158-173. doi: 10.1016/j.watres.2014.12.001 [15] DU X, XU J, MO Z, et al. The performance of gravity-driven membrane (GDM) filtration for roofing rainwater reuse: Implications of roofing rainwater energy and rainwater purification[J]. Science of the Total Environment, 2019, 697: 134187. doi: 10.1016/j.scitotenv.2019.134187 [16] 李娜, 李志东, 李国德, 等. 膜生物反应器处理生活污水中膜污染的研究[J]. 水处理技术, 2007(8): 16-19. doi: 10.3969/j.issn.1000-3770.2007.08.004 [17] 林红军, 陆晓峰, 段伟, 等. 膜生物反应器中膜过滤特征及膜污染机理的研究[J]. 环境科学, 2006(12): 2511-2517. doi: 10.3321/j.issn:0250-3301.2006.12.026 [18] 刘纳. 新型超滤膜水处理性能及膜污染规律研究[D]. 郑州: 华北水利水电学院, 2011. [19] 宋瑞霖. 活性炭/沸石强化重力流超滤系统除污染效能及膜污染机制研究[Z]. 2021. [20] 唐小斌. 生物滤饼层/超滤耦合工艺净化水源水机理及优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [21] PURO L, TANNINEN J, NYSTROM M. Analyses of organic foulants in membranes fouled by pulp and paper mill effluent using solid-liquid extraction[J]. Desalination, 2002, 143(1): 1-9. doi: 10.1016/S0011-9164(02)00215-1 [22] CHEW J W, KILDUFF J, BELFORT G. The behavior of suspensions and macromolecular solutions in crossflow microfiltration: An update[J]. Journal of Membrane Science, 2020, 601: 117865. doi: 10.1016/j.memsci.2020.117865 [23] 宋伟, 杨平. 膜生物反应器中膜孔堵塞的影响因素及控制方法[J]. 化工环保. 2007(3): 240-244. [24] PRONK W, DING A, MORGENROTH E, et al. Gravity-driven membrane filtration for water and wastewater treatment: A review[J]. Water Research, 2019, 149: 553-565. doi: 10.1016/j.watres.2018.11.062 [25] DERLON N, KOCH N, Eugster B, et al. Activity of metazoa governs biofilm structure formation and enhances permeate flux during gravity-driven membrane (GDM) filtration[J]. Water Research, 2013, 47(6): 2085-2095. doi: 10.1016/j.watres.2013.01.033 [26] DERLON N, PETER-VARBANETS M, SCHEIDEGGER A, et al. Predation influences the structure of biofilm developed on ultrafiltration membranes[J]. Water Research, 2012, 46(10): 3323-3333. doi: 10.1016/j.watres.2012.03.031 [27] 窦娜莎, 王琳. 16S rDNA克隆文库法分析Biostyr曝气生物滤池处理城市污水的细菌多样性研究[J]. 环境科学学报, 2011, 31(10): 2117-2124. [28] 纪雪梅. 云阳县农村小型供水生物慢滤处理技术实验研究[D]. 济南: 济南大学, 2018. [29] DU P, LI X, YANG Y, et al. Algae-laden fouling control by gravity-driven membrane ultrafiltration with aluminum sulfate-chitosan: The property of floc and cake layer[J]. Water, 2020, 12(7): 1990. doi: 10.3390/w12071990 [30] OOI B S, ISHAK N I I, CHIEH D C J. A modular gravity-driven ultrafiltration (GDU) membrane system for contaminant removal: Dynamic flux modelling and its fouling study[Z]. Research Square: 2019. [31] LEE D, LEE Y, CHOI S S, et al. Effect of membrane property and feed water organic matter quality on long-term performance of the gravity-driven membrane filtration process[J]. Environmental Science and Pollution Research, 2019, 26(2): 1152-1162. doi: 10.1007/s11356-017-9627-8 [32] PROCTOR C R, BESMER M D, LANGENEGGER T, et al. Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems[J]. The ISME Journal, 2018, 12(5): 1344-1359. doi: 10.1038/s41396-018-0070-8 [33] NAKAI R. Size matters: Ultra-small and filterable microorganisms in the environment[J]. Microbes and Environments, 2020, 35(2): ME20025. [34] GU X, ZHAI H, CHENG S. Fate of antibiotics and antibiotic resistance genes in home water purification systems[J]. Water Research, 2021, 190: 116762. doi: 10.1016/j.watres.2020.116762 [35] KUDINOVA A G, PETROVA M A, DOLGIKH A V, et al. Taxonomic diversity of bacteria and their filterable forms in the soils of eastern antarctica (larsemann hills and bunger hills)[J]. Microbiology (New York), 2020, 89(5): 574-584. [36] DESMOND P, BEST J P, MORGENROTH E, et al. Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms[J]. Water Research, 2018, 132: 211-221. doi: 10.1016/j.watres.2017.12.058