-
挥发性有机化合物(volatile organic compounds,VOCs)主要来源于工业生产、溶剂使用、机动车尾气和生物质燃烧等领域[1-2],其无序排放会造成雾霾、光化学烟雾、臭氧损耗、全球变暖,同时也会危害人群健康[3]。生态环境部在制《重点行业挥发性有机物综合治理方案》中指出:石油化工、工业喷涂和印刷包装等是VOCs治理的重点行业,要求综合治理印刷包装在内的重点行业排放的VOCs,推行强化源头控制和提升末端治理水平[2,4]。现行的工业VOCs末端治理技术分为回收技术和销毁技术2大类。回收技术包括膜分离、吸收、吸附和冷凝技术等;销毁技术包括蓄热式热力氧化、催化氧化、低温等离子体催化和生物技术等[5]。
催化氧化法因对中小气量和中高浓度VOCs的处理具有无选择性和降解效率高等特点[6-9],已成为国家推荐和企业青睐的技术[10]。传统的VOCs催化氧化技术利用电加热器预热将VOCs加热至起燃点并送入催化剂床层,在催化剂表面发生氧化反应,整个过程能耗较高[11]。而微波加热只对吸波性物质起作用,且催化剂介电常数越大,微波加热作用越强,因此会在催化剂床层形成“局部热点”,从而有利于VOCs降解;另外,微波的“偶极极化”作用可促进极性VOCs分子振荡,降低其反应自由能而有助于氧化反应的进行。因此,微波加热具有选择性加热、即时加热、加热均匀和能耗低等优点[12-13],可代替传统的电加热应用于催化氧化技术中。本课题组贺利娜和杨力等[14-15]利用小型微波催化燃烧装置和Cu-Mn-Ce催化剂处理单组分和多组分VOCs废气均取得了良好的去除效果,单组分甲苯在床层温度270 ℃下的去除率为90%,双组份的甲苯和氯苯在层温度273 ℃下的去除率分别为95%和90%。ZHU等[16]发现,在实验室用浸渍法制备的Pt/CuMnCe整体式催化剂对甲苯、乙酸乙酯和正己烷具有良好的催化活性,其T90(T90指VOCs去除率为90%时的反应温度)分别为216、200和260 ℃。
为解决工程应用中可能出现的尾气带走过多热量、燃烧装置保温效果较差、能量损耗严重,以及微波源端的高温废气严重影响磁控管正常工作等突出问题,以整体式蜂窝状堇青石和纳米陶瓷为载体,用等量浸渍法制备了Pt/CuMnCeOx/堇青石整体式蜂窝状(Pt/CMC/CH)催化剂和Pt/CuMnCeOx/纳米陶瓷整体式蜂窝状(Pt/CMC/NH)催化剂。进一步地,将制备的催化剂应用于自主研发的大型微波催化燃烧装置,在印刷包装企业现场开展了含甲苯、二甲苯、乙酸乙酯、甲缩醛、二氯丙烷、醇、树脂和少量丁酮等[17-19]VOCs的废气治理研究,考察了进气质量浓度、进气量和床层温度等因素的变化对VOCs去除率的影响,通过表征催化剂观察其表面形貌特征及活性组分成分,以期为微波催化燃烧技术的应用推广提供参考。
微波催化燃烧技术处理印刷包装行业VOCs
Microwave catalytic combustion of VOCs exhaust from printing and packaging industry
-
摘要: 微波催化燃烧技术将微波辐照与吸波型催化剂相结合,可用于对挥发性有机化合物(VOCs)进行催化燃烧处置。研制了Pt/CuMnCeOx/堇青石和Pt/CuMnCeOx/纳米陶瓷整体式蜂窝状催化剂,并开发了微波催化燃烧VOCs的装置,将其应用于印刷包装行业的VOCs治理。通过操作条件的优化,考察了微波催化燃烧技术对VOCs的实际处理效果。同时,对催化剂表面形貌、比表面积和晶体结构等进行了测试分析。结果表明:Mn3O4/Mn2O3、CeO2/Ce2O3、CuMn2O4和PtO等尖晶石的存在降低了反应温度、提高了储氧释氧能力和催化剂活性;催化剂的介孔结构和较大的比表面积有利于VOCs在孔隙内部的扩散,并可延长VOCs在催化剂上的停留时间。在催化剂床层体积330 L、微波功率13.6 kW、进气质量浓度1 520 mg·m-3和进气量440 m3·h−1的条件下,床层温度可达到420 ℃,此时催化剂床层温度及VOCs去除率保持稳定。当进气质量浓度分别为约4 500 mg·m−3和2 800 mg·m−3时,VOCs的去除率分别为90%和96%。考察燃烧热量发现,大气量的VOCs在催化剂表面的停留时间短且带走热量多,从而导致VOCs去除率下降;高浓度VOCs在燃烧时会因释放出更多热量,从而提高床层温度和VOCs去除率。在确保催化剂表面活性位点充足的条件下,微波催化燃烧工艺适合处理中高浓度的印刷包装行业VOCs。同时,利用VOCs燃烧释放的热量来保持床层高温,还可达到节能降耗的目的。本研究可为印刷包装行业的VOCs治理提供参考。Abstract: Microwave catalytic combustion is a new catalytic combustion technology that combining microwave irradiation with microwave-absorbing catalyst closely. Based on the development of microwave catalytic combustion device and the exploitation of monolithic honeycomb catalysts of both Pt/CuMnCeOx/cordierite and Pt/CuMnCeOx/nano ceramic, this new technology was applied to treat volatile organic compounds (VOCs) exhausting from a printing and packaging factory on the spot. The real removal rate of VOCs by microwave catalytic combustion was investigated through an optimization of different operating conditions. Subsequently, surface morphology, specific surface area and crystal structure of the catalysts were characterized in this study. It indicated that the existence of Mn3O4/Mn2O3, CeO2/Ce2O3, CuMn2O4 and PtO spinels reduced reaction temperature and improved oxygen reserving-releasing ability and catalytic activity of the catalysts greatly. The mesoporous structure and abundant specific surface area of the catalysts are beneficial to the diffusion of pollutants in the inner pores and can prolong the retention time of targets on the surface of the catalysts simultaneously. The research work showed that bed temperature reached 420 ℃ and VOCs removal rate kept at steady under the conditions(330 L of bed volume, 13.6 kW of microwave power, 1 520 mg·m-3 of inlet concentration and 440 m3·h−1 of airflow). The removal rates of VOCs exhaust were 90% and 96% when the inlet concentration was about 4 500 mg·m−3 and 2 800 mg·m−3, respectively. The retention time of VOCs on the surface of the catalyst was shortened and much more heat was taken away with the increase of airflow, which resulted in a decrease of VOCs removal rate. VOCs exhaust with high concentration released more heat while burning, which increased bed temperature apparently and improved VOCs removal rate obviously. The new technology was confirmed to be suitable for the treatment of VOCs with medium or high concentration on condition that sufficient active sites are provided onto the surface of the catalyst. Simultaneously, heat releasing from VOCs combustion can maintain high temperature of catalyst bed so that additional energy do not need to be provided, which save energy and reduce cost in the operation. This study carves out a new way for the treatment of VOCs from printing and packaging industry.
-
表 1 催化剂的比表面积和孔结构参数
Table 1. The specific surface area and pore parameters of the carriers and catalysts
样品 比表面积
/(m2·g−1)微孔面积
/(m2·g−1)孔体积
/(cm3·g−1)微孔体积
/(cm3·g−1)平均孔径
/nmCH载体 0.110 0.000 0.254 0.000 000 36.789 Pt/CMC/CH催化剂 2.945 1.115 0.342 0.000 473 36.853 NH载体 9.355 1.794 0.352 0.000 721 34.486 Pt/CMC/NH催化剂 17.585 1.441 0.355 0.000 482 36.472 -
[1] SCIRE S, LIOTTA L F. Supported gold catalysts for the total oxidation of volatile organic compounds[J]. Applied Catalysis B:Environmental, 2012, 125: 222-246. doi: 10.1016/j.apcatb.2012.05.047 [2] LIU Y X, DENG J G, XIE S H, et al. Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts[J]. Chinese Journal of Catalysis, 2016, 37(8): 1193-1205. doi: 10.1016/S1872-2067(16)62457-9 [3] ZHANG S H, YOU J P, KENNES C, et al. Current advances of VOCs degradation by bioelectrochemical systems: A review[J]. Chemical Engineering Journal, 2018, 334: 2625-2637. doi: 10.1016/j.cej.2017.11.014 [4] “十三五”挥发性有机物污染防治工作方案[J]. 石油石化绿色低碳, 2017, 2(5): 68. [5] LI X Q, ZHANG L, YANG Z Q, et al. Adsorption materials for volatile organic compounds (VOCs) and the Key factors for VOCs adsorption process: A review[J]. Separation and Purification Technology, 2020, 235: 116213. doi: 10.1016/j.seppur.2019.116213 [6] CHEN G Y, WANG Z, LIN F W, et al. Comparative investigation on catalytic ozonation of VOCs in different types over supported MnOx catalysts[J]. Journal of Hazardous Materials, 2020, 391: 122218. doi: 10.1016/j.jhazmat.2020.122218 [7] HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-568. doi: 10.1021/acs.chemrev.8b00408 [8] LIU X L, CHEN L, ZHU T U, et al. Catalytic oxidation of chlorobenzene over noble metals (Pd, Pt, Ru, Rh) and the distributions of polychlorinated by-products[J]. Journal of Hazardous Materials, 2019, 363: 90-98. doi: 10.1016/j.jhazmat.2018.09.074 [9] FANG R M, HUANG W J, HUANG H B, et al. Efficient MnOx/SiO2@AC catalyst for ozone-catalytic oxidation of gaseous benzene at ambient temperature[J]. Applied Surface Science, 2019, 470: 439-447. doi: 10.1016/j.apsusc.2018.11.146 [10] SHU Y J, XU Y, HUANG H B, et al. Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185nm VUV irradiation [J]. 2018, 208: 550-558. [11] 卜龙利, 刘海楠, 王晓辉, 等. 不同加热方式下催化氧化甲苯的性能研究[J]. 环境化学, 2013, 32(8): 1524-1531. doi: 10.7524/j.issn.0254-6108.2013.08.017 [12] 周德良, 刘洁. 微波加热及其量子特性[J]. 黑龙江八一农垦大学学报, 2019, 31(1): 74-77. doi: 10.3969/j.issn.1002-2090.2019.01.013 [13] 普婧, 张之筠, 刘钱钱, 等. 钛渣在微波加热过程中的升温特性和吸收行为[J]. 钢铁钒钛, 2019, 40(1): 18-22. doi: 10.7513/j.issn.1004-7638.2019.01.004 [14] 贺利娜, 卜龙利, 都琳, 等. 微波催化燃烧气态甲苯特性及床层温度分布[J]. 中国环境科学, 2019, 39(8): 3242-3248. doi: 10.3969/j.issn.1000-6923.2019.08.014 [15] 杨力, 卜龙利, 孙剑宇, 等. 双组分甲苯、氯苯的微波辅助催化氧化及机理[J]. 环境工程学报, 2014, 8(11): 4871-4879. [16] ZHU A M, ZHOU Y, WANG Y, et al. Catalytic combustion of VOCs on Pt/CuMnCe and Pt/CeY honeycomb monolithic catalysts[J]. Journal of Rare Earths, 2018, 36(12): 1272-1277. doi: 10.1016/j.jre.2018.03.032 [17] 严雪峰. 某包装厂印刷有机废气处理工程设计 [D]. 武汉: 武汉工程大学, 2015. [18] 王俊. 苏州市印刷包装行业挥发性有机污染物处理对策研究 [D]. 苏州: 苏州科技大学, 2016. [19] 王家德, 吕建璋, 李文娟, 等. 浙江省包装印刷行业挥发性有机物排放特征及排放系数[J]. 环境科学, 2018, 39(8): 3552-3556. [20] 卜龙利, 张钰彩, 王晓晖, 等. 微波辅助催化氧化苯高性能催化剂实验研究[J]. 燃料化学学报, 2012, 40(7): 878-885. doi: 10.3969/j.issn.0253-2409.2012.07.018 [21] SANZ O, DELGADO J J, NAVARRO P, et al. VOCs combustion catalysed by platinum supported on manganese octahedral molecular sieves [J]. Applied Catalysis B: Environmental, 2011, 110; 231-237. [22] DAI Q G, WANG X Y, LU G Z. Low-temperature catalytic destruction of chlorinated VOCs over cerium oxide[J]. Catalysis Communications, 2007, 8(11): 1645-1649. doi: 10.1016/j.catcom.2007.01.024 [23] KIM S C, SHIM W G. Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Applied Catalysis B:Environmental, 2010, 98(3-4): 180-185. doi: 10.1016/j.apcatb.2010.05.027 [24] ZENG Y Q, WANG Y N, SONG F J, et al. The effect of CuO loading on different method prepared CeO2 catalyst for toluene oxidation[J]. Science of the Total Environment, 2020, 712: 135635. doi: 10.1016/j.scitotenv.2019.135635 [25] 张晖, 吴春笃. 环境工程原理 [M]. 武汉: 华中科技大学出版社, 2011. [26] 金彦任, 黄振兴. 吸附与孔径分布 [M]. 北京: 国防工业出版社, 2015. [27] 徐铭遥. 单元式CuMn2CenOx/Cord催化剂的研制及其对甲苯催化燃烧性能 [D]. 广州: 华南理工大学, 2011. [28] GE Y L, FU K X, ZHAO Q, et al. Performance study of modified Pt catalysts for the complete oxidation of acetone[J]. Chemical Engineering Science, 2019, 206: 499-506. doi: 10.1016/j.ces.2019.05.051 [29] 刘秀珍. MnOx-CeO2/蜂窝沸石对甲苯的吸附-低温催化氧化一体化研究 [D]. 广州: 华南理工大学, 2012. [30] 刘鹏. 多孔矿物负载型/过渡金属复合型锰氧化物热催化氧化挥发性有机物的研究 [D]. 北京: 中国科学院大学, 2019. [31] ZHANG X, WU D F. Ceramic monolith supported Mn-Ce-M ternary mixed-oxide (M=Cu, Ni or Co) catalyst for VOCs catalytic oxidation[J]. Ceramics International, 2016, 42(15): 16563-16570. doi: 10.1016/j.ceramint.2016.07.076 [32] PAN H Y, XU M Y, LI Z, et al. Catalytic combustion of styrene over copper based catalyst: Inhibitory effect of water vapor[J]. Chemosphere, 2009, 76(5): 721-726. doi: 10.1016/j.chemosphere.2009.04.019 [33] LI X, WANG L J, XIA Q B, et al. Catalytic oxidation of toluene over copper and manganese based catalysts: Effect of water vapor[J]. Catalysis Communications, 2011, 14(1): 15-19. doi: 10.1016/j.catcom.2011.07.003 [34] ELKHALIFA E A, FRIEDRICH H B. Oxidative dehydrogenation of n-octane over a vanadium-magnesium oxide catalyst: Influence of the gas hourly space velocity[J]. Arabian Journal of Chemistry, 2019, 12(8): 2464-2469. doi: 10.1016/j.arabjc.2015.03.017 [35] 刘海楠, 卜龙利, 王晓晖, 等. 二氧化钛复合型催化剂制备及其微波辅助催化氧化甲苯性能[J]. 环境科学学报, 2013, 33(6): 1720-1727.