[1] SCIRE S, LIOTTA L F. Supported gold catalysts for the total oxidation of volatile organic compounds[J]. Applied Catalysis B:Environmental, 2012, 125: 222-246. doi: 10.1016/j.apcatb.2012.05.047
[2] LIU Y X, DENG J G, XIE S H, et al. Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts[J]. Chinese Journal of Catalysis, 2016, 37(8): 1193-1205. doi: 10.1016/S1872-2067(16)62457-9
[3] ZHANG S H, YOU J P, KENNES C, et al. Current advances of VOCs degradation by bioelectrochemical systems: A review[J]. Chemical Engineering Journal, 2018, 334: 2625-2637. doi: 10.1016/j.cej.2017.11.014
[4] “十三五”挥发性有机物污染防治工作方案[J]. 石油石化绿色低碳, 2017, 2(5): 68.
[5] LI X Q, ZHANG L, YANG Z Q, et al. Adsorption materials for volatile organic compounds (VOCs) and the Key factors for VOCs adsorption process: A review[J]. Separation and Purification Technology, 2020, 235: 116213. doi: 10.1016/j.seppur.2019.116213
[6] CHEN G Y, WANG Z, LIN F W, et al. Comparative investigation on catalytic ozonation of VOCs in different types over supported MnOx catalysts[J]. Journal of Hazardous Materials, 2020, 391: 122218. doi: 10.1016/j.jhazmat.2020.122218
[7] HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7): 4471-568. doi: 10.1021/acs.chemrev.8b00408
[8] LIU X L, CHEN L, ZHU T U, et al. Catalytic oxidation of chlorobenzene over noble metals (Pd, Pt, Ru, Rh) and the distributions of polychlorinated by-products[J]. Journal of Hazardous Materials, 2019, 363: 90-98. doi: 10.1016/j.jhazmat.2018.09.074
[9] FANG R M, HUANG W J, HUANG H B, et al. Efficient MnOx/SiO2@AC catalyst for ozone-catalytic oxidation of gaseous benzene at ambient temperature[J]. Applied Surface Science, 2019, 470: 439-447. doi: 10.1016/j.apsusc.2018.11.146
[10] SHU Y J, XU Y, HUANG H B, et al. Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185nm VUV irradiation [J]. 2018, 208: 550-558.
[11] 卜龙利, 刘海楠, 王晓辉, 等. 不同加热方式下催化氧化甲苯的性能研究[J]. 环境化学, 2013, 32(8): 1524-1531. doi: 10.7524/j.issn.0254-6108.2013.08.017
[12] 周德良, 刘洁. 微波加热及其量子特性[J]. 黑龙江八一农垦大学学报, 2019, 31(1): 74-77. doi: 10.3969/j.issn.1002-2090.2019.01.013
[13] 普婧, 张之筠, 刘钱钱, 等. 钛渣在微波加热过程中的升温特性和吸收行为[J]. 钢铁钒钛, 2019, 40(1): 18-22. doi: 10.7513/j.issn.1004-7638.2019.01.004
[14] 贺利娜, 卜龙利, 都琳, 等. 微波催化燃烧气态甲苯特性及床层温度分布[J]. 中国环境科学, 2019, 39(8): 3242-3248. doi: 10.3969/j.issn.1000-6923.2019.08.014
[15] 杨力, 卜龙利, 孙剑宇, 等. 双组分甲苯、氯苯的微波辅助催化氧化及机理[J]. 环境工程学报, 2014, 8(11): 4871-4879.
[16] ZHU A M, ZHOU Y, WANG Y, et al. Catalytic combustion of VOCs on Pt/CuMnCe and Pt/CeY honeycomb monolithic catalysts[J]. Journal of Rare Earths, 2018, 36(12): 1272-1277. doi: 10.1016/j.jre.2018.03.032
[17] 严雪峰. 某包装厂印刷有机废气处理工程设计 [D]. 武汉: 武汉工程大学, 2015.
[18] 王俊. 苏州市印刷包装行业挥发性有机污染物处理对策研究 [D]. 苏州: 苏州科技大学, 2016.
[19] 王家德, 吕建璋, 李文娟, 等. 浙江省包装印刷行业挥发性有机物排放特征及排放系数[J]. 环境科学, 2018, 39(8): 3552-3556.
[20] 卜龙利, 张钰彩, 王晓晖, 等. 微波辅助催化氧化苯高性能催化剂实验研究[J]. 燃料化学学报, 2012, 40(7): 878-885. doi: 10.3969/j.issn.0253-2409.2012.07.018
[21] SANZ O, DELGADO J J, NAVARRO P, et al. VOCs combustion catalysed by platinum supported on manganese octahedral molecular sieves [J]. Applied Catalysis B: Environmental, 2011, 110; 231-237.
[22] DAI Q G, WANG X Y, LU G Z. Low-temperature catalytic destruction of chlorinated VOCs over cerium oxide[J]. Catalysis Communications, 2007, 8(11): 1645-1649. doi: 10.1016/j.catcom.2007.01.024
[23] KIM S C, SHIM W G. Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Applied Catalysis B:Environmental, 2010, 98(3-4): 180-185. doi: 10.1016/j.apcatb.2010.05.027
[24] ZENG Y Q, WANG Y N, SONG F J, et al. The effect of CuO loading on different method prepared CeO2 catalyst for toluene oxidation[J]. Science of the Total Environment, 2020, 712: 135635. doi: 10.1016/j.scitotenv.2019.135635
[25] 张晖, 吴春笃. 环境工程原理 [M]. 武汉: 华中科技大学出版社, 2011.
[26] 金彦任, 黄振兴. 吸附与孔径分布 [M]. 北京: 国防工业出版社, 2015.
[27] 徐铭遥. 单元式CuMn2CenOx/Cord催化剂的研制及其对甲苯催化燃烧性能 [D]. 广州: 华南理工大学, 2011.
[28] GE Y L, FU K X, ZHAO Q, et al. Performance study of modified Pt catalysts for the complete oxidation of acetone[J]. Chemical Engineering Science, 2019, 206: 499-506. doi: 10.1016/j.ces.2019.05.051
[29] 刘秀珍. MnOx-CeO2/蜂窝沸石对甲苯的吸附-低温催化氧化一体化研究 [D]. 广州: 华南理工大学, 2012.
[30] 刘鹏. 多孔矿物负载型/过渡金属复合型锰氧化物热催化氧化挥发性有机物的研究 [D]. 北京: 中国科学院大学, 2019.
[31] ZHANG X, WU D F. Ceramic monolith supported Mn-Ce-M ternary mixed-oxide (M=Cu, Ni or Co) catalyst for VOCs catalytic oxidation[J]. Ceramics International, 2016, 42(15): 16563-16570. doi: 10.1016/j.ceramint.2016.07.076
[32] PAN H Y, XU M Y, LI Z, et al. Catalytic combustion of styrene over copper based catalyst: Inhibitory effect of water vapor[J]. Chemosphere, 2009, 76(5): 721-726. doi: 10.1016/j.chemosphere.2009.04.019
[33] LI X, WANG L J, XIA Q B, et al. Catalytic oxidation of toluene over copper and manganese based catalysts: Effect of water vapor[J]. Catalysis Communications, 2011, 14(1): 15-19. doi: 10.1016/j.catcom.2011.07.003
[34] ELKHALIFA E A, FRIEDRICH H B. Oxidative dehydrogenation of n-octane over a vanadium-magnesium oxide catalyst: Influence of the gas hourly space velocity[J]. Arabian Journal of Chemistry, 2019, 12(8): 2464-2469. doi: 10.1016/j.arabjc.2015.03.017
[35] 刘海楠, 卜龙利, 王晓晖, 等. 二氧化钛复合型催化剂制备及其微波辅助催化氧化甲苯性能[J]. 环境科学学报, 2013, 33(6): 1720-1727.