-
印染废水中含有多种染料、浆料、表面活性剂等复杂化学物质,具有水质成分复杂、水量变化大、有机污染物浓度高、可生化性较差、色度高等特点[1]。在印染行业中,每年约生产7~10×105 t染料,向水体排放的染料约2.8×105 t。亚甲基蓝(methylene blue,MB)和刚果红(congo red,CR)作为典型的阳离子染料和阴离子染料,是印染废水中所含的主要污染物之一。因此,对2种染料的去除至关重要。
印染废水的处理方法有物理法、化学法和生物法。其中生物法中的膜生物反应器(membrane bioreactor,MBR)因具有出水水质稳定、剩余污泥产量少、占地面积小等优点[2-3],受到很多学者和工程技术人员的关注。DEOWAN等[4]采用一体式膜生物反应器(submerged membrane bioreactor,SMBR)系统处理模拟印染废水,发现当渗透通量为4 L·(m2·h)−1、污泥质量浓度(mixed liquor suspended solids,MLSS)为12 g·L−1、水力停留时间(hydraulic retention time,HRT)为40~80 h时,COD去除率为90%,对酸性红4和雷马唑亮蓝R的去除率分别为25%~70%和20%~50%。丁岚等[5]设计了缺氧/好氧MBR装置并对模拟印染废水进行了处理,结果表明,系统对COD的去除率达到85%以上,对活性艳红染料X-3B的去除率为60%~73%,出水仍具有少量色度。邢奕等[6]采用MBR-反渗透(RO)工艺对印染废水进行了深度处理,在MBR系统运行过程中,对COD、SS和色度的去除率分别为89.9%、100%和87.5%,出水未满足生产回用的要求。SARI等[7]对传统MBR和移动床膜生物反应器(moving bed membrane bioreactor,MB-MBR)工艺处理印染废水进行了比较,结果表明,MBR和MB-MBR系统对COD和活性红的去除率几乎相同;但在MBR中,分别每隔1 d和15 d进行1次物理和化学膜清洗,MB-MBR系统可减缓膜污染。YURTSEVER等[8]对比了厌氧膜生物反应器(anaerobic membrane bioreactor,AnMBR)和好氧膜生物反应器(aerobic membrane bioreactor,AeMBR)处理偶氮染料的效果,发现AnMBR在9 L·(m2·h)−1下可稳定运行,且在通量为4.5 L·(m2·h)−1下50 d内无需化学清洗;而AeMBR在通量为20 L·(m2·h)−1下可稳定运行,且该系统经过化学清洗后的膜阻力与新膜相近。
综上所述,现有研究侧重于MBR对印染废水中的处理性能和膜污染控制,而考察印染废水水质对MBR性能影响的研究较少。本文采用MBR对2种不同类型的染料废水进行了处理,在相同的染料浓度条件下,探究了染料类型对MBR去除效果、活性污泥特性及膜污染的影响,以期为MBR系统针对性处理不同类型染料废水提供参考。
染料类型对膜生物反应器性能的影响
Influence of dye type on the performance of membrane bioreactor
-
摘要: 为了考察染料类型对膜生物反应器(MBR)处理性能的影响,在相同的染料浓度条件下,探究了阳离子染料MB和阴离子染料CR对MBR去除效果、活性污泥特性及膜污染的影响。结果表明,MBR对亚甲基蓝印染废水中的COD、
${{\rm{NH}}_4^ + } $ -N和亚甲基蓝的去除率分别为83.07%、25.11%和52.26%,均低于处理刚果红印染废水中的相应污染物去除率(88.93%、87.44%和92.39%)。前者系统中污泥代谢产物为71.43 mg·g−1,高于后者的35.22 mg·g−1,且D50为110.9 μm,导致系统分别在第10和17天的TMP达到清洗压力。扫描电子显微镜、阻力分析和红外光谱表征结果表明,处理亚甲基蓝印染废水的MBR滤饼层较厚(137 μm),膜孔阻力较大(9.01%),污染物主要成分为多糖和蛋白质。Abstract: In order to investigate the effect of dye types on the performance of membrane bioreactor (MBR), at the same dye concentrations, the effects of cationic dye MB and anionic dye CR on MBR removal efficiency, activated sludge characteristics and membrane fouling were studied. The results showed that the removal rates of COD,$ {\rm{NH}}_4^ + $ -N and methylene blue were 83.07%, 25.11% and 52.26% by MBR treating printing and dyeing wastewater with methylene blue, respectively, which were all lower than 88.93%, 87.44% and 92.39% by MBR treating printing and dyeing wastewater congo red. The sludge metabolite of the former system was 71.43 mg·g−1 , being higher than 35.22 mg·g−1 of the latter system, and the D50 was 110.9 μm, which caused the system TMP reaching the cleaning pressure on the 10th and 17th day, respectively. The results of scanning electron microscope, resistance analysis and infrared spectroscopy showed the filter cake layer of MBR treating printing and dyeing wastewater with methylene blue was thicker (137 μm), the membrane pore resistance was larger (9.01%), and the main contaminants were polysaccharides and proteins.-
Key words:
- membrane bioreactor /
- methylene blue /
- Congo red /
- removal effect /
- activated sludge /
- membrane fouling
-
表 1 MBR中膜过滤阻力分布及相对阻力贡献
Table 1. Membrane filtration resistance distribution and relative resistance contribution in MBR
MBR 阻力/(109 m−1) 相对阻力贡献/% Rt Rm Rc Rp Ri Rm Rc Rp Ri R1 2.72 2.23 0.35 0.10 0.04 81.98 12.87 3.68 1.47 R2 4.33 2.26 1.58 0.39 0.10 52.19 36.49 9.01 2.31 R3 2.85 2.19 0.40 0.17 0.09 76.84 14.04 5.96 3.16 -
[1] 宋箭, 赵秋燕, 伍昌年, 等. 复合式动态膜生物反应器处理印染废水效能及膜污染控制[J]. 环境工程学报, 2016, 10(5): 2193-2200. doi: 10.12030/j.cjee.201510224 [2] 金诚, 杨波, 李方, 等. 好氧颗粒污泥自生动态膜生物反应器处理碱减量印染废水[J]. 环境工程学报, 2014, 8(9): 3819-3824. [3] 公言飞, 刘鹏, 郅立鹏. 膜生物反应器(MBR)研究现状及发展趋势[J]. 中国资源综合利用, 2021, 39(3): 90-93. doi: 10.3969/j.issn.1008-9500.2021.03.026 [4] DEOWAN S A, GALIANO F, HOINKIS J, et al. Submerged membrane bioreactor (SMBR) for treatment of textile dye wastewatertowards developing novel MBR process[J]. APCBEE Procedia, 2013, 5: 259-264. doi: 10.1016/j.apcbee.2013.05.045 [5] 丁岚, 谢元华, 钟圣俊, 等. 膜生物反应器法处理模拟印染废水[J]. 环境保护科学, 2013, 39(1): 6-10. doi: 10.3969/j.issn.1004-6216.2013.01.002 [6] 邢奕, 鲁安怀, 洪晨, 等. 膜生物反应器(MBR)-反渗透(RO)工艺深度处理印染废水的实验研究[J]. 环境工程学报, 2011, 5(11): 2583-2586. [7] SARI ERKAN H, ÇAGLAK A, SOYSALOGLU A, et al. Performance evaluation of conventional membrane bioreactor and moving bed membrane bioreactor for synthetic textile wastewater treatment[J]. Journal of Water Process Engineering, 2020, 38: 101631. doi: 10.1016/j.jwpe.2020.101631 [8] YURTSEVER A, SAHINKAYA E, AKTAS O, et al. Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater[J]. Bioresource Technology, 2015, 192: 564-573. doi: 10.1016/j.biortech.2015.06.024 [9] RAVADELLI M, DA COSTA R E, Lobo-Recio M A, et al. Anoxic/oxic membrane bioreactor assisted by electrocoagulation for the treatment of azo-dye containing wastewater[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105286. doi: 10.1016/j.jece.2021.105286 [10] FENG F, XU Z, LI X, et al. Advanced treatment of dyeing wastewater towards reuse by the combined Fenton oxidation and membrane bioreactor process[J]. Journal of Environmental Sciences, 2010, 22(11): 1657-1665. doi: 10.1016/S1001-0742(09)60303-X [11] JOHIR M A, SHANMUGANATHAN S, VIGNESWARAN S, et al. Performance of submerged membrane bioreactor (SMBR) with and without the addition of the different particle sizes of GAC as suspended medium[J]. Bioresource Technology, 2013, 141: 13-18. doi: 10.1016/j.biortech.2013.03.032 [12] WANG Y, ZHONG C, HHUANG D, et al. The membrane fouling characteristics of MBRs with different aerobic granular sludges at high flux[J]. Bioresource Technology, 2013, 136: 488-495. doi: 10.1016/j.biortech.2013.03.066 [13] CHANG I S, KIM S N. Wastewater treatment using membrane filtration: Effect of biosolids concentration on cake resistance[J]. Process Biochemistry, 2005, 40(3): 1307-1314. [14] KIM J Y, CHANG I S, PARK H H, et al. New configuration of a membrane bioreactor for effective control of membrane fouling and nutrients removal in wastewater treatment[J]. Desalination, 2008, 230(1): 153-161. [15] FRIHA I, BRADAI M, JOHNSON D, et al. Treatment of textile wastewater by submerged membrane bioreactor: In vitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater[J]. Journal of Environmental Management, 2015, 160: 184-192. [16] JI J, KULSHRESHTHA S, KAKADE A, et al. Bioaugmentation of membrane bioreactor with Aeromonas hydrophila LZ-MG14 for enhanced malachite green and hexavalent chromium removal in textile wastewater[J]. International Biodeterioration & Biodegradation, 2020, 150: 104939. [17] ZHANG D, TRZCINSKI A P, KUNACHEVA C, et al. Characterization of soluble microbial products (SMPs) in a membrane bioreactor (MBR) treating synthetic wastewater containing pharmaceutical compounds[J]. Water Research, 2016, 102: 594-606. doi: 10.1016/j.watres.2016.06.059 [18] 曹靖. 升流式水解反硝化-好氧工艺处理实际染料废水中试研究[D]. 北京: 北京化工大学, 2020. [19] LIU Y, NGO H H, GUO W, et al. Autotrophic nitrogen removal in membrane-aerated biofilms: Archaeal ammonia oxidation versus bacterial ammonia oxidation[J]. Chemical Engineering Journal, 2016, 302: 535-544. doi: 10.1016/j.cej.2016.05.078 [20] LAUTERBOCK B, NIKOLAUSZ M, LV Z, et al. Improvement of anaerobic digestion performance by continuous nitrogen removal with a membrane contactor treating a substrate rich in ammonia and sulfide[J]. Bioresource Technology, 2014, 158: 209-216. doi: 10.1016/j.biortech.2014.02.012 [21] DEOWAN S A, GALIANO F, HOINKIS J, et al. Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment[J]. Journal of Membrane Science, 2016, 510: 524-532. doi: 10.1016/j.memsci.2016.03.002 [22] KONSOWA A H, ELOFFY M G, EL-TAWEEL Y A. Treatment of dyeing wastewater using submerged membrane bioreactor[J]. Desalination and Water Treatment, 2013, 51(4/5/6): 1079-1090. [23] KUNACHEVA C, STUCKEY D C. Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems: A review[J]. Water Research, 2014, 61: 1-18. doi: 10.1016/j.watres.2014.04.044 [24] LASPIDOU C S, RITTMANN B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research, 2002, 36(11): 2711-2720. doi: 10.1016/S0043-1354(01)00413-4 [25] ZHANG W, LIU F, WANG D, et al. Impact of reactor configuration on treatment performance and microbial diversity in treating high-strength dyeing wastewater: Anaerobic flat-sheet ceramic membrane bioreactor versus upflow anaerobic sludge blanket reactor[J]. Bioresource Technology, 2018, 269: 269-275. doi: 10.1016/j.biortech.2018.08.126 [26] MENG F, ZHANG S, OH Y, et al. Fouling in membrane bioreactors: An updated review[J]. Water Research, 2017, 114: 151-180. doi: 10.1016/j.watres.2017.02.006 [27] CHEN M Y, LEE D J, TAY J H. Distribution of extracellular polymeric substances in aerobic granules[J]. Applied Microbiology Biotechnology, 2007, 73(6): 1463-1469. doi: 10.1007/s00253-006-0617-x [28] AQUINO S F, STUCKEY D C. Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds[J]. Water Research, 2004, 38(2): 255-266. doi: 10.1016/j.watres.2003.09.031 [29] TIAN Y, LU Y, LI Z. Performance analysis of a combined system of membrane bioreactor and worm reactor: Wastewater treatment, sludge reduction and membrane fouling[J]. Bioresource Technology, 2012, 121: 176-182. doi: 10.1016/j.biortech.2012.06.071 [30] TEYCHENE B, GUIGUI C, CABASSUD C, et al. Toward a better identification of foulant species in MBR processes[J]. Desalination, 2008, 231(1): 27-34. [31] ROSENBERGER S, LAABS C, LESJEAN B, et al. Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment[J]. Water Research, 2006, 40(4): 710-720. doi: 10.1016/j.watres.2005.11.028 [32] ERSAHIN M E, OZGUN H, TAO Y, et al. Applicability of dynamic membrane technology in anaerobic membrane bioreactors[J]. Water Research, 2014, 48: 420-429. doi: 10.1016/j.watres.2013.09.054 [33] YURTSEVER A, SAHINKAYA E, ÇINAR Ö. Performance and foulant characteristics of an anaerobic membrane bioreactor treating real textile wastewater[J]. Journal of Water Process Engineering, 2020, 33: 101088. doi: 10.1016/j.jwpe.2019.101088 [34] YURTSEVER A, BASARAN E, UCAR D, et al. Self-forming dynamic membrane bioreactor for textile industry wastewater treatment[J]. Science of The Total Environment, 2021, 751: 141572. doi: 10.1016/j.scitotenv.2020.141572 [35] CHEN W, LUO J, CAO R, et al. Effect of macroporous adsorption resin-membrane bioreactor hybrid system against fouling for municipal wastewater treatment[J]. Bioresource Technology, 2017, 224: 112-117. doi: 10.1016/j.biortech.2016.11.094