[1] |
宋箭, 赵秋燕, 伍昌年, 等. 复合式动态膜生物反应器处理印染废水效能及膜污染控制[J]. 环境工程学报, 2016, 10(5): 2193-2200. doi: 10.12030/j.cjee.201510224
|
[2] |
金诚, 杨波, 李方, 等. 好氧颗粒污泥自生动态膜生物反应器处理碱减量印染废水[J]. 环境工程学报, 2014, 8(9): 3819-3824.
|
[3] |
公言飞, 刘鹏, 郅立鹏. 膜生物反应器(MBR)研究现状及发展趋势[J]. 中国资源综合利用, 2021, 39(3): 90-93. doi: 10.3969/j.issn.1008-9500.2021.03.026
|
[4] |
DEOWAN S A, GALIANO F, HOINKIS J, et al. Submerged membrane bioreactor (SMBR) for treatment of textile dye wastewatertowards developing novel MBR process[J]. APCBEE Procedia, 2013, 5: 259-264. doi: 10.1016/j.apcbee.2013.05.045
|
[5] |
丁岚, 谢元华, 钟圣俊, 等. 膜生物反应器法处理模拟印染废水[J]. 环境保护科学, 2013, 39(1): 6-10. doi: 10.3969/j.issn.1004-6216.2013.01.002
|
[6] |
邢奕, 鲁安怀, 洪晨, 等. 膜生物反应器(MBR)-反渗透(RO)工艺深度处理印染废水的实验研究[J]. 环境工程学报, 2011, 5(11): 2583-2586.
|
[7] |
SARI ERKAN H, ÇAGLAK A, SOYSALOGLU A, et al. Performance evaluation of conventional membrane bioreactor and moving bed membrane bioreactor for synthetic textile wastewater treatment[J]. Journal of Water Process Engineering, 2020, 38: 101631. doi: 10.1016/j.jwpe.2020.101631
|
[8] |
YURTSEVER A, SAHINKAYA E, AKTAS O, et al. Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater[J]. Bioresource Technology, 2015, 192: 564-573. doi: 10.1016/j.biortech.2015.06.024
|
[9] |
RAVADELLI M, DA COSTA R E, Lobo-Recio M A, et al. Anoxic/oxic membrane bioreactor assisted by electrocoagulation for the treatment of azo-dye containing wastewater[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105286. doi: 10.1016/j.jece.2021.105286
|
[10] |
FENG F, XU Z, LI X, et al. Advanced treatment of dyeing wastewater towards reuse by the combined Fenton oxidation and membrane bioreactor process[J]. Journal of Environmental Sciences, 2010, 22(11): 1657-1665. doi: 10.1016/S1001-0742(09)60303-X
|
[11] |
JOHIR M A, SHANMUGANATHAN S, VIGNESWARAN S, et al. Performance of submerged membrane bioreactor (SMBR) with and without the addition of the different particle sizes of GAC as suspended medium[J]. Bioresource Technology, 2013, 141: 13-18. doi: 10.1016/j.biortech.2013.03.032
|
[12] |
WANG Y, ZHONG C, HHUANG D, et al. The membrane fouling characteristics of MBRs with different aerobic granular sludges at high flux[J]. Bioresource Technology, 2013, 136: 488-495. doi: 10.1016/j.biortech.2013.03.066
|
[13] |
CHANG I S, KIM S N. Wastewater treatment using membrane filtration: Effect of biosolids concentration on cake resistance[J]. Process Biochemistry, 2005, 40(3): 1307-1314.
|
[14] |
KIM J Y, CHANG I S, PARK H H, et al. New configuration of a membrane bioreactor for effective control of membrane fouling and nutrients removal in wastewater treatment[J]. Desalination, 2008, 230(1): 153-161.
|
[15] |
FRIHA I, BRADAI M, JOHNSON D, et al. Treatment of textile wastewater by submerged membrane bioreactor: In vitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater[J]. Journal of Environmental Management, 2015, 160: 184-192.
|
[16] |
JI J, KULSHRESHTHA S, KAKADE A, et al. Bioaugmentation of membrane bioreactor with Aeromonas hydrophila LZ-MG14 for enhanced malachite green and hexavalent chromium removal in textile wastewater[J]. International Biodeterioration & Biodegradation, 2020, 150: 104939.
|
[17] |
ZHANG D, TRZCINSKI A P, KUNACHEVA C, et al. Characterization of soluble microbial products (SMPs) in a membrane bioreactor (MBR) treating synthetic wastewater containing pharmaceutical compounds[J]. Water Research, 2016, 102: 594-606. doi: 10.1016/j.watres.2016.06.059
|
[18] |
曹靖. 升流式水解反硝化-好氧工艺处理实际染料废水中试研究[D]. 北京: 北京化工大学, 2020.
|
[19] |
LIU Y, NGO H H, GUO W, et al. Autotrophic nitrogen removal in membrane-aerated biofilms: Archaeal ammonia oxidation versus bacterial ammonia oxidation[J]. Chemical Engineering Journal, 2016, 302: 535-544. doi: 10.1016/j.cej.2016.05.078
|
[20] |
LAUTERBOCK B, NIKOLAUSZ M, LV Z, et al. Improvement of anaerobic digestion performance by continuous nitrogen removal with a membrane contactor treating a substrate rich in ammonia and sulfide[J]. Bioresource Technology, 2014, 158: 209-216. doi: 10.1016/j.biortech.2014.02.012
|
[21] |
DEOWAN S A, GALIANO F, HOINKIS J, et al. Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment[J]. Journal of Membrane Science, 2016, 510: 524-532. doi: 10.1016/j.memsci.2016.03.002
|
[22] |
KONSOWA A H, ELOFFY M G, EL-TAWEEL Y A. Treatment of dyeing wastewater using submerged membrane bioreactor[J]. Desalination and Water Treatment, 2013, 51(4/5/6): 1079-1090.
|
[23] |
KUNACHEVA C, STUCKEY D C. Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems: A review[J]. Water Research, 2014, 61: 1-18. doi: 10.1016/j.watres.2014.04.044
|
[24] |
LASPIDOU C S, RITTMANN B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research, 2002, 36(11): 2711-2720. doi: 10.1016/S0043-1354(01)00413-4
|
[25] |
ZHANG W, LIU F, WANG D, et al. Impact of reactor configuration on treatment performance and microbial diversity in treating high-strength dyeing wastewater: Anaerobic flat-sheet ceramic membrane bioreactor versus upflow anaerobic sludge blanket reactor[J]. Bioresource Technology, 2018, 269: 269-275. doi: 10.1016/j.biortech.2018.08.126
|
[26] |
MENG F, ZHANG S, OH Y, et al. Fouling in membrane bioreactors: An updated review[J]. Water Research, 2017, 114: 151-180. doi: 10.1016/j.watres.2017.02.006
|
[27] |
CHEN M Y, LEE D J, TAY J H. Distribution of extracellular polymeric substances in aerobic granules[J]. Applied Microbiology Biotechnology, 2007, 73(6): 1463-1469. doi: 10.1007/s00253-006-0617-x
|
[28] |
AQUINO S F, STUCKEY D C. Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds[J]. Water Research, 2004, 38(2): 255-266. doi: 10.1016/j.watres.2003.09.031
|
[29] |
TIAN Y, LU Y, LI Z. Performance analysis of a combined system of membrane bioreactor and worm reactor: Wastewater treatment, sludge reduction and membrane fouling[J]. Bioresource Technology, 2012, 121: 176-182. doi: 10.1016/j.biortech.2012.06.071
|
[30] |
TEYCHENE B, GUIGUI C, CABASSUD C, et al. Toward a better identification of foulant species in MBR processes[J]. Desalination, 2008, 231(1): 27-34.
|
[31] |
ROSENBERGER S, LAABS C, LESJEAN B, et al. Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment[J]. Water Research, 2006, 40(4): 710-720. doi: 10.1016/j.watres.2005.11.028
|
[32] |
ERSAHIN M E, OZGUN H, TAO Y, et al. Applicability of dynamic membrane technology in anaerobic membrane bioreactors[J]. Water Research, 2014, 48: 420-429. doi: 10.1016/j.watres.2013.09.054
|
[33] |
YURTSEVER A, SAHINKAYA E, ÇINAR Ö. Performance and foulant characteristics of an anaerobic membrane bioreactor treating real textile wastewater[J]. Journal of Water Process Engineering, 2020, 33: 101088. doi: 10.1016/j.jwpe.2019.101088
|
[34] |
YURTSEVER A, BASARAN E, UCAR D, et al. Self-forming dynamic membrane bioreactor for textile industry wastewater treatment[J]. Science of The Total Environment, 2021, 751: 141572. doi: 10.1016/j.scitotenv.2020.141572
|
[35] |
CHEN W, LUO J, CAO R, et al. Effect of macroporous adsorption resin-membrane bioreactor hybrid system against fouling for municipal wastewater treatment[J]. Bioresource Technology, 2017, 224: 112-117. doi: 10.1016/j.biortech.2016.11.094
|