-
河流生态缓冲带通常指为保护河流免于直接受到或减少人类活动干扰和自然干扰(如土壤侵蚀)的带状保护区域[1–3]。其中,人类活动包括城镇化、农业种植与养殖、工厂建设、道路建设、旅游、伐木等。河流生态缓冲带(简称“缓冲带”)中良好的土地利用类型,如林地或草地,是减轻陆地生态系统对河流生态环境干扰的重要屏障[4],也是降低面源污染对河流水生态质量影响的最佳管理实践(best management practices, BMPs)重要内容之一[5–7]。
人类活动会直接影响缓冲带土地利用类型的构成。与水质退化相关的土地利用类型主要为城镇建设用地和农业用地。而没有开发的土地利用类型,如林地,则有助于保护水质[8],且可以积极保护河流底栖动物[9]、鱼类[10]、软体动物[11]和龙虾等物种的多样性[12]。然而,关于缓冲带如何影响河流水质和水生生物,目前的认知并不全面。现有研究表明,除了受不同研究选择的空间尺度(区域尺度、流域尺度和沿岸带尺度)不一致的影响外[13],还与研究时选择的缓冲带宽度有关[14]。另外,缓冲带对河流水质和水生生物的影响在不同区域和不同河流间很可能存在差异[15]。因此,有关缓冲带对河流水质和水生生物影响的共性认识仍需更多来自不同河流的研究数据支撑。
本研究以浦阳江干流为研究对象,通过分析其干流缓冲带与河流水质和底栖动物多样性之间的关系,揭示缓冲带对河流水质和水生生物的影响机制,以期更好地发挥缓冲带的生态效应,并为科学合理地设计缓冲带提供参考。
浦阳江干流河流生态缓冲带土地利用类型对水质和底栖动物的影响
Effects of land uses within buffer zone on water quality and benthic macroinvertebrates in Puyangjiang River
-
摘要: 为揭示河流生态缓冲带土地利用变化对水质和水生生物多样性的影响,以浦阳江干流为研究对象,通过底栖动物野外采集、水质分析和河岸带土地利用解译,分析其干流河流生态缓冲带土地利用类型与河流水质和底栖动物多样性之间的关系。结果表明,高锰酸盐指数(CODMn)、氨氮(NH3-N)和总磷(TP)与林业用地呈负相关,但与农业用地显著正相关。底栖动物群落多样性与农业用地呈显著正相关,但与城镇用地显著负相关。冗余分析结果显示,浦阳江上游浦江段河流生态缓冲带中农业用地对底栖动物影响最大,中下游的诸暨段建设用地对底栖动物的影响最大。这表明同一条河流的上下游,河流生态缓冲带中农业和建设用地对底栖动物多样性的影响可能不同。河流生态缓冲带修复实践中,增加林地面积和自然岸线比例对河流水生生物多样性恢复与保护有促进作用。Abstract: In order to explore the effect of land use types on water quality and aquatic biodiversity in river ecological buffer zone, the main stream of Puyang river was taken as the research object by the field collection of benthic animals, water quaity analysis and riparian land use interpretation. The result showed that the permanganate index (CODMn), ammonia nitrogen (NH3-N) and total phosphorus (TP) were negatively correlated with the percentage of forest land use, while positively correlated with the percentage of agricultural land. The benthic community diversity was of positive correlation with the percentage of agricultural land and negative correlation with percentage of urban land. The redundancy analysis results revealed that the benthic animals were greatly affected by the percentage of agricultural land at Pujiang segment of the upper reaches of Puyang River, while the benthic animals were mostly affected by the percentage of urban land at Zhuji segment of the middle and lower reaches. It was showed that the agricultural land and urban lands may have different effects on the benthic animal diversity at the upstream and downstream within the same river buffer zone. It is suggested that the increase of wood land and natural bank ration would benefit the recovery and protection of river aquatic biodiversity in the restoration practice of river ecological buffer zone,
-
Key words:
- riparian zone /
- water quality /
- benthic macroinvertebrates /
- land use
-
表 1 水质因子、缓冲带和底栖动物的Spearman相关系数
Table 1. Spearman correlation among water quality, buffer zone and benthic animals
项目 CODMn NH3-N TP 农业用地 林地 建设用地 自然岸线 香农多样性指数 物种丰富度species 农田 0.08 0.41 0.38 林地 –0.07 –0.49 –0.47 –0.52* 建设用地 0.01 0.06 –0.05 –0.65** –0.29 自然岸线 0.04 –0.43 –0.15 –0.27 0.61* –0.24 香农多样性 0.16 0.18 0.36 0.70** –0.16 –0.63* 0.16 物种丰富度 0.25 0.22 0.24 0.75** –0.15 –0.67** 0.03 0.69** EPT丰富度 0.10 0.32 0.26 0.67** –0.39 –0.37 –0.02 0.58 0.82** 注:*表示在0.05水平上(双侧)显著相关;**表示在0.01水平上(双侧)显著相关。 表 2 水质指标和缓冲带土地利用组成的主成分分析
Table 2. The principle analysis of water quality and land uses in buffer zone
主成分
梯度CODMn
贡献参数NH3-N
贡献参数TP贡献
参数农田贡
献参数林地贡
献参数建设用地
贡献参数自然岸线
贡献参数λ 方差
贡献率/%累积方差
贡献率/%PC1 0.918 0.642 0.92 0.122 –0.127 0.046 0.016 1.64 38.21 38.21 PC2 0.188 –0.498 –0.2 –0.301 0.929 –0.321 0.858 1.34 25.45 63.66 PC3 –0.091 0.282 0.068 0.916 0.058 –0.933 –0.019 1.27 22.85 86.51 注:第一主成分PC1代表样点的水质梯度,第二主成分PC2代表缓冲带中林地和自然岸线梯度变化,第三主成分PC3代表缓冲带受干扰程度;粗体表示在该主成分上的主要贡献参数。 -
[1] CORRELL D L. Principles of planning and establishment of buffer zones[J]. Ecological Engineering, 2005, 24(5): 433-439. doi: 10.1016/j.ecoleng.2005.01.007 [2] JUSYS T. Quantifying avoided deforestation in pará: Protected areas, buffer zones and edge effects[J]. Journal for Nature Conservation, 2016, 33: 10-17. doi: 10.1016/j.jnc.2016.05.001 [3] LOPES M S, VEETTIL B K, SALDANHA D L. Buffer zone delimitation of conservation units based on map algebra and ahp technique: A study from atlantic forest biome (Brazil)[J]. Biological Conservation, 2021, 253: 108905. doi: 10.1016/j.biocon.2020.108905 [4] KAVIAN A, SALEH I, HABIBNEJAD M, et al. Effectiveness of vegetative buffer strips at reducing runoff, soil erosion, and nitrate transport during degraded hillslope restoration in northern Iran[J]. Land Degradation and Development, 2018, 29(9): 3194-3203. doi: 10.1002/ldr.3051 [5] WARRINGTON B, AUST W, BARRETT S, et al. Forestry best management practices relationships with aquatic and riparian fauna: A review[J]. Forests, 2017, 8(9): 331. doi: 10.3390/f8090331 [6] GERGEL S E, TURNER M G, MILLER J R, et al. Landscape indicators of human impacts to riverine systems[J]. Landscape Indicators, 2002, 64: 11. [7] SHANDAS V, ALBERTI M. Exploring the role of vegetation fragmentation on aquatic conditions: Linking upland with riparian areas in puget sound lowland streams[J]. Landscape and Urban Planning, 2009, 90(1/2): 66-75. [8] TU J. Spatially varying relationships between land use and water quality across an urbanization gradient explored by geographically weighted regression[J]. Applied Geography, 2011, 31(1): 376-392. doi: 10.1016/j.apgeog.2010.08.001 [9] QUINN J M, BOOTHROYD I K G, SMITH B J. Riparian buffers mitigate effects of pine plantation logging on new zealand streams[J]. Forest Ecology and Management, 2004, 191(1/2/3): 129-146. [10] ALLAN J D, WIPFLI M S, CAOUETTE J P, et al. Influence of streamside vegetation on inputs of terrestrial invertebrates to salmonid food webs[J]. 2003, 60: 12. [11] POOLE K E, DOWNING J A. Relationship of declining mussel biodiversity to stream-reach and watershed characteristics in an agricultural landscape[J]. Journal of the North American Benthological Society, 2004, 23: 114-125. doi: 10.1899/0887-3593(2004)023<0114:RODMBT>2.0.CO;2 [12] ADAMS S B, DAVIS B A, MILLER D A. Hobbseus yalobushensis, a crayfish of intermittent streams: biotic and habitat associations, life history characteristics, and new localities[J]. The American Midland Naturalist, 2018, 179(1): 126-149. doi: 10.1674/0003-0031-179.1.126 [13] DING J, JIANG Y, LIU Q, et al. Influences of the land use pattern on water quality in low-order streams of the dongjiang river basin, China: A multi-scale analysis[J]. Science of the Total Environment, 2016, 551–552: 205–216. [14] LI K, CHI G, WANG L, et al. Identifying the critical riparian buffer zone with the strongest linkage between landscape characteristics and surface water quality[J]. Ecological Indicators, 2018, 93: 741-752. doi: 10.1016/j.ecolind.2018.05.030 [15] GRIFFITH J A. Geographic techniques and recent applications of remote sensing to landscape-water quality studies[J]. Water, Air, and Soil Pollution, 2002, 138(1/4): 181-197. doi: 10.1023/A:1015546915924 [16] 国家环境保护总局. 水和废水监测分析方法 [J]. 4版. 北京:中国环境科学出版社, 2002: 210-266. [17] WANG B, LIU D, LIU S, et al. Impacts of urbanization on stream habitats and macroinvertebrate communities in the tributaries of qiangtang river, China[J]. Hydrobiologia, 2012, 680(1): 39-51. doi: 10.1007/s10750-011-0899-6 [18] 浙江动物志委员会. 浙江动物志, 软体动物[M]. 杭州: 浙江科学技术出版社, 1991. [19] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838-2002[S]. 北京: 中国标准出版社, 2002. [20] STUTTER M I, LANGAN S J, DEMARS B O L. River sediments provide a link between catchment pressures and ecological status in a mixed land use scottish river system[J]. Water Research, 2007, 41(12): 2803-2815. doi: 10.1016/j.watres.2007.03.006 [21] MEHAFFEY M H, NASH M S, WADE T G, et al. Linking land cover and water quality in new york city's water supply watersheds[J]. Environmental Monitoring and Assessment, 2005, 107(1/2/3): 29-44. doi: 10.1007/s10661-005-2018-5 [22] 程昌锦, 张建, 雷刚, 等. 湖北丹江口库区滨水植被缓冲带氮磷截留效应[J]. 林业科学, 2020, 56(9): 12-20. [23] TONG S T Y, CHEN W. Modeling the relationship between land use and surface water quality[J]. Journal of Environmental Management, 2002, 66(4): 377-393. [24] LEE S W, HWANG S J, LEE S B, et al. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics[J]. Landscape and Urban Planning, 2009, 92(2): 80-89. doi: 10.1016/j.landurbplan.2009.02.008 [25] ALBERTI M, BOOTH D, HILL K, et al. The impact of urban patterns on aquatic ecosystems: An empirical analysis in puget lowland sub-basins[J]. Landscape and Urban Planning, 2007, 80(4): 345-361. doi: 10.1016/j.landurbplan.2006.08.001 [26] 李丽娟, 金文, 王博涵, 等. 太子河河岸带土地利用类型与硅藻群落结构的关系[J]. 环境科学研究, 2015, 28(11): 1662-1669. [27] 王琼, 范康飞, 范志平, 等. 河岸缓冲带对氮污染物削减作用研究进展[J]. 生态学杂志, 2020, 39(2): 665-677. [28] DHONDT K, BOECKX P, VERHOEST N E C, et al. Assessment of temporal and spatial variation of nitrate removal in riparian zones[J]. Environmental Monitoring and Assessment, 2006, 116(1/2/3): 197-215. doi: 10.1007/s10661-006-7403-1 [29] VIKMAN A, SARKKOLA S, KOIVUSALO H, et al. Nitrogen retention by peatland buffer areas at six forested catchments in southern and central finland[J]. Hydrobiologia, 2010, 641(1): 171-183. doi: 10.1007/s10750-009-0079-0 [30] LEE P, SMYTH C, BOUTIN S. Quantitative review of riparian buffer width guidelines from canada and the united states[J]. Journal of Environmental Management, 2004, 70(2): 165-180. [31] AL-ZANKANA A F A, MATHESON T, HARPER D M. How strong is the evidence: Based on macroinvertebrate community responses: That river restoration works?[J]. Ecohydrology & Hydrobiology, 2020, 20(2): 196-214. [32] IÑIGUEZ-ARMIJOS C, HAMPEL H, BREUER L. Land-use effects on structural and functional composition of benthic and leaf-associated macroinvertebrates in four andean streams[J]. Aquatic Ecology, 2018, 52(1): 77-92. doi: 10.1007/s10452-017-9646-z [33] 马凯, 张海萍, 渠晓东, 等. 滦河流域土地利用对大型底栖动物生物指数的路径分析[J]. 中国环境科学, 2017, 37(7): 2674-2683. doi: 10.3969/j.issn.1000-6923.2017.07.032 [34] ALLAN J D. Landscapes and riverscapes: The influence of land use on stream ecosystems[J]. Annual Review of Ecology, Evolution, and Systematics, 2004, 35(1): 257-284. doi: 10.1146/annurev.ecolsys.35.120202.110122 [35] HERMAN M R, NEJADHASHEMI A P. A review of macroinvertebrate- and fish-based stream health indices[J]. Ecohydrology & Hydrobiology, 2015, 15(2): 53-67. [36] KOPERSKI P. Diversity of freshwater macrobenthos and its use in biological assessment: A critical review of current applications[J]. Environmental Reviews, 2011, 19(1): 16-31. [37] 张又, 刘凌, 蔡永久, 等. 太湖流域河流及溪流大型底栖动物群落结构及影响因素[J]. 中国环境科学, 2015, 35(5): 1535-1546. doi: 10.3969/j.issn.1000-6923.2015.05.034 [38] 王皓冉, 陈永灿, 刘昭伟, 等. 牡丹江中游底栖动物分布及其与栖境因子的关系[J]. 中国环境科学, 2015, 35(4): 1197-1204. [39] SUNDERMANN A, ANTONS C, CRON N, et al. Hydromorphological restoration of running waters: Effects on benthic invertebrate assemblages: Benthic invertebrate response to restoration[J]. Freshwater Biology, 2011, 56(8): 1689-1702. doi: 10.1111/j.1365-2427.2011.02599.x [40] MOORE A A, PALMER M A. Invertebrate biodiversity in agricultural and urban headwater streams: Implications for conservation and management[J]. Ecological Applications, 2005, 15(4): 1169-1177. doi: 10.1890/04-1484 [41] 盛天进, EVANCE M, 吴聪, 等. 浙江浦阳江大型底栖无脊椎动物物种多样性和生态功能恢复研究[J]. 环境监控与预警, 2021, 13(2): 1-8.