-
地下水是人类赖以生存和持续发展的物质基础与战略资源。保护地下水环境,对经济社会发展及生态环境安全都具有重要意义[1-3]。但随着我国经济社会的快速发展,污水废水的无序排放、工业生产过程的跑冒滴漏、化肥农药的过度施用等使得地下水污染问题日益突出[4-6]。2019年生态环境公报显示,全国10 168个地下水水质监测点,IV类占比66.9%,V类占比18.8%,地下水质量不容乐观[7]。
因此,开发高效的地下水污染修复技术成为了一个重要的研究课题。目前,常用地下水修复技术包括抽出-处理技术、渗透性反应墙技术、原位化学氧化/还原技术等[8-10]。其中,原位化学氧化技术具有场地适应性强、修复彻底、处理污染物种类较多、处理时间较短、成本相对低廉等显著优势,在地下水修复中得到广泛运用[11-13]。原位化学氧化技术是指借用一定的技术设备将固、液或气态氧化药剂注入到地下水中,利用氧化剂的强氧化性,使污染物质氧化分解,转变成低毒或者无毒物质的方法[14],其修复效果取决于污染含水层深度、药剂在饱和层介质中的迁移扩散能力,以及药剂与污染物的接触和反应效率等[15-17],其中注入方式的选择对药剂在饱和层介质中的迁移扩散能力具有重要影响[18]。影响半径是反映药剂迁移扩散情况的直观参数,大量研究者们希望通过理论计算的方式得到单个注射井的影响半径,但目前仍无统一定论。Friedrich对美国数百个原位化学氧化技术修复土壤和地下水的相关资料进行了统计,结果显示,氧化剂的影响半径为0.5~15 m,有效作用半径为0.5~7.5 m[19]。
目前,有关原位化学氧化技术的研究多集中于氧化剂活化方式[20-22]、缓释型药剂开发[23-24]、监测方法[25-26]、氧化机理[27-28]等基础性研究工作,而对于注入技术的探索较少。当前地下水修复原位注入技术主要包括直压式高压注射法、注射井法、高压旋喷注射法、Geoprobe技术、电动化学注浆、深层搅拌等[29]。大量研究及实践表明,现有的原位注入技术普遍存在钻注不同步、注入效率差、作用深度有限、模块化程度低等问题[30]。
本研究针对某退役化工厂地下水中的有机污染物氯苯,采用本研究团队自主开发的连续管式原位注入化学氧化技术开展中试实验,研究药剂影响半径并验证设备可靠性和修复效果,以期为该项技术的工程化推广提供参考。
连续管式原位注入化学氧化技术对某有机污染场地地下水的修复效果
Pilot scale study on groundwater remediation in an organic contaminated site by coiled tubing in-situ injection chemical oxidation technique
-
摘要: 针对传统地下水原位注入化学氧化技术存在注入深度浅、效率低等问题,采用连续管和高压水射流技术实现地下水原位修复药剂钻注一体化和水射流钻进,以提高效率和深层修复。以某退役化工厂地下水中的氯苯为目标污染物,基于自主开发的连续管式原位注入化学氧化技术开展了中试规模的实验研究,基于现场实验确定原位注入药剂影响半径并评估了修复效果。结果表明,药剂影响半径可达2 m,且药剂扩散趋势与场地总体地下水流场的流向基本吻合;经原位化学氧化处理后,实验区地下水中氯苯检测质量浓度低于400 μg·L−1,即采用连续管式原位注入化学氧化技术实现了实验区地下水中氯苯的有效去除。本研究可为连续管注入技术在地下水原位修复中的应用提供参考。Abstract: In view of the problems of shallow injection depth and low efficiency of traditional in-situ groundwater chemical oxidation technology, coiled tubing and high-pressure water jet technology were used to realize the integration of in-situ groundwater remediation drilling and water jet drilling, so as to improve efficiency and deep groundwater remediation. Taking the chlorobenzene in the groundwater of a decompensated chemical plant as the target pollutant, a pilot-scale test was carried out based on the self-developed coiled tubing in-situ injection chemical oxidation technology, and field tests were conducted to determine the influence radius and remediation effect of the in-situ injection agent. The results showed that the influence radius of the agent was up to 2 m, and the diffusion trend of the agent was basically consistent with the flow direction of the overall groundwater flow field of the site. After the in situ chemical oxidation treatment, the detection concentration of chlorobenzene in the groundwater of the test area was lower than 400 μg·L−1, that means the coiled tubing in-situ injection chemical oxidation technology was used to effectively remove chlorobenzene in the groundwater of the test area. This study can provide theoretical reference for the application of coiled tubing injection technology in in-situ remediation of groundwater.
-
表 1 设备钻进实验数据
Table 1. Drilling test data of equipment
实验序号 压力/MPa 流量/(L·min−1) 水射流理论喷速/(m·s−1) 1 20.09 79 200 2 15.21 69 174 3 9.83 56 140 4 4.98 40 100 5 3.12 33 77 表 2 部分点位工艺运行数据
Table 2. Operation data of some in-situ injection points
注入点
序号钻进压力/MPa 钻进清水耗量/L 钻进时间/min 药剂注射压力/MPa 药剂溶液注入量/L 注入时间/min 1 20.93 795 10 20.90 8 206 104 4 19.40 830 10 22.28 7 860 97 7 13.69 748 11 21.14 8 340 105 10 15.48 700 10 21.85 7 820 95 13 9.11 660 12 22.84 8 814 110 16 4.38 451 11 22.13 8 592 106 19 4.49 546 14 18.59 8 560 112 22 5.82 418 11 19.14 8 092 101 25 5.31 468 12 21.81 8 660 113 28 6.33 451 11 20.79 8 506 107 31 4.66 520 13 21.02 7 860 97 34 5.41 494 13 21.94 7 798 94 37 4.88 533 13 19.22 8 820 110 40 5.90 462 11 18.13 9 112 128 43 6.14 560 14 21.64 8 610 108 46 5.25 451 11 21.10 7 614 94 49 3.90 588 14 20.06 8 427 107 52 4.88 588 14 20.12 7 800 100 55 7.00 507 13 21.50 7 454 93 58 4.24 546 13 22.77 7 300 90 61 4.38 574 14 21.91 9 382 120 64 6.72 480 12 21.93 8 018 99 表 3 修复前后目标污染物质量浓度变化情况
Table 3. The concentration of target pollutants after remediation
监测井编号 井深/m 氯苯质量浓度/(μg·L−1) 修复前最高值 修复后最高值 1 14.00 1 200 未检出 2 4.00 950 1.30 注:修复目标值400 μg·L−1。 -
[1] 薛禹群, 张幼宽. 地下水污染防治在我国水体污染控制与治理中的双重意义[J]. 环境科学学报, 2009, 29(3): 474-481. doi: 10.3321/j.issn:0253-2468.2009.03.002 [2] 吕倩, 魏洁云. 中国地下水污染现状及治理[J]. 生态经济, 2016, 32(10): 4. [3] NEWELL C J, ADAMSON D T, KULKARNI P R, et al. Comparing PFAS to other groundwater contaminants: Implications for remediation[J]. Remediation Journal, 2020, 30(3): 7-26. doi: 10.1002/rem.21645 [4] 丁嘉琰. 城市地下水污染现状及防治技术研究[J]. 资源节约与环保, 2020(11): 47-48. doi: 10.3969/j.issn.1673-2251.2020.11.029 [5] 姚德俊, 岳昌盛, 吕建国, 等. 我国工业场地污染地下水修复技术研究进展[J]. 现代化工, 2020, 40(12): 45-49. [6] LI Z, SUN Y, YANG Y, et al. Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater[J]. Journal of Hazardous Materials, 2020, 383: 121240.1-121240.9. [7] 2019年中国生态环境状况公报[EB/OL]. [2020-06-02]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202006/P020200602509464172096.pdf. [8] 陈敏. 地下水污染修复技术综述[J]. 云南化工, 2020, 47(11): 12-14. doi: 10.3969/j.issn.1004-275X.2020.11.05 [9] 蒲生彦, 侯国庆, 吕雪, 等. 过氧化钙缓释技术在地下水污染修复中的应用研究[J]. 工业水处理, 2020, 40(8): 1-6. [10] YONG S O, JORG R, DEYI H, et al. Soil and Groundwater Remediation Technologies: A Practical Guide[M]. CRC Press, 2020. [11] 吴金红, 吴志鹏. 高压旋喷注射法在城市石油烃污染场地修复中的实践应用[J]. 绿色科技, 2018(12): 93-96. [12] CHEN L W, HU X X, CAI T M. Degradation of triclosan in soils by thermally activated persulfate under conditions representative of in situ chemical oxidation (ISCO)[J]. Chemical Engineering Journal, 2019, 369: 344-352. doi: 10.1016/j.cej.2019.03.084 [13] UNGTAE K, JACK C P, ROBERT C B. Stochastic cost-optimization and risk assessment of in situ chemical oxidation for dense non-aqueous phase liquid (DNAPL) source remediation[J]. Stochastic Environmental Research and Risk Assessment, 2019, 33(1): 73-89. doi: 10.1007/s00477-018-1633-y [14] 崔朋, 刘骁勇, 刘敏, 等. 原位化学氧化技术在苯酚类污染场地修复中的应用[J]. 山东化工, 2020, 49(9): 251-253. [15] 宛召. 高压旋喷工艺在上海某污染场地修复中的应用研究[D]. 长春: 吉林大学, 2017. [16] MANOJ P. R, DASOM O, CHUNG-SEOP L, et al. In situ chemical oxidation of contaminated groundwater using a sulfidized nanoscale zerovalent iron-persulfate system: Insights from a box-type study[J]. Chemosphere, 2020, 257: 127117. doi: 10.1016/j.chemosphere.2020.127117 [17] YANG X Y, CAI J S, WANG X N, et al. A bimetallic Fe-Mn oxide-activated oxone for in situ chemical oxidation ISCO of trichloroethylene in groundwater: Efficiency, sustained activity and mechanism investigation[J]. Environmental Science & Technology, 2020, 54(6): 3714-3724. [18] 张超. 地下水中1, 2, 4-TCB污染的原位化学氧化修复技术实验研究[D]. 南京: 南京大学, 2018. [19] FRIEDRICH J K. Critical analysis of the field-scale application of in situ chemical oxidation for the remediation of contaminated groundwater[D]. Colorado: Colorado School of Mines, 2008. [20] LIU X X, YUAN S H, ZHANG P. Reduced nontronite-activated H2O2 for contaminants degradation: The beneficial role of clayed fractions in ISCO treatments[J]. Journal of Hazardous Materials, 2020, 386: 121945. [21] ALANNAH T, NICK Z, STEPHEN P M. In-situ chemical oxidation of chlorendic acid by persulfate: Elucidation of the roles of adsorption and oxidation on chlorendic acid removal[J]. Water Research, 2019, 162: 78-86. doi: 10.1016/j.watres.2019.06.061 [22] YAN N, ZHONG H, BRUSSEAU M L. The natural activation ability of subsurface media to promote in-situ chemical oxidation of 1, 4-dioxane[J]. Water Research, 2019, 149: 386-393. doi: 10.1016/j.watres.2018.11.028 [23] 蒲生彦, 陈文英, 王宇, 等. 可控缓释技术在地下水原位修复中的应用研究进展[J]. 环境化学, 2020, 39(8): 2237-2244. [24] PETER T P, ROBERTO A, FEDERICO P, et al. Sustained release of persulfate from inert inorganic materials for groundwater remediation[J]. Chemosphere, 2020, 259: 127508. doi: 10.1016/j.chemosphere.2020.127508 [25] NAIMA A K, KENNETH C C. Natural attenuation method for contaminant remediation reagent delivery assessment for in situ chemical oxidation using aqueous ozone[J]. Chemosphere, 2020, 247: 125848. [26] 姜勇, 徐刚, 杨洁, 等. 高密度电法在原位修复土壤过程中的监控研究[J]. 环境监测管理与技术, 2020, 32(6): 18-22. doi: 10.3969/j.issn.1006-2009.2020.06.005 [27] ZENG H B, ZHAO X, ZHAO F P, et al. Oxidation of 2, 4-dichlorophenol in saline water by unactivated peroxymonosulfate: Mechanism, kinetics and implication for in situ chemical oxidation[J]. Science of the Total Environment, 2020, 728: 138826. doi: 10.1016/j.scitotenv.2020.138826 [28] MASOUD A, HARIHAR R. Transport with bimolecular reactions in a fracture‐matrix system: Analytical solutions with applications to in situ chemical oxidation[J]. Water Resources Research, 2019, 55(5): 3904-3924. doi: 10.1029/2019WR024762 [29] 陈素云, 王慧玲, 张靖婷, 等. 探讨原位化学氧化法氧化剂分散技术[J]. 环境与发展, 2018, 30(1): 113-114. [30] 冯超, 王瑜, 王志乔, 等. 地下水原位修复材料钻进注入技术现状调研[C]//中国地质学会. 第二十届全国探矿工程(岩土钻掘工程)学术交流年会论文集. 中国地质学会: 中国地质学会探矿工程专业委员会, 2019: 9