-
大量氟化物的直接排放会对土壤、地下水及工农业生产等产生危害,尤其是能够影响植物的新陈代谢,抑制农作物的呼吸和光合作用。另外,人类长期吸收过量的氟化物会引起氟斑牙,甚至会造成骨膜增生、骨节硬化及骨质疏松等问题[1-2]。据调查,我国北方某地矿产业较为发达,煤矿开采中产生了大量的含氟矿井水,由于对矿井水的不当处置造成该地地表水氟化物超标,其检出质量浓度约为5.0 mg·L−1。除氟污染外,该地区地表水受人类活动影响较大,地表水中还含有一定量的有机污染物,有机物质量浓度可达4.0 mg·L−1,这增加了矿井水的处理以及综合利用难度[3]。
矿井水具有水量大,氟化物含量低的特点[4]。常用的处理方法主要有吸附法、混凝法、离子交换法、电渗析法、反渗透法和电凝聚法等[5-8]。吸附法虽然具有工艺简单、吸附速率快的特点,但主要用于处理低浓度的含氟废水,且由于吸附容量低、吸附剂再生及再生液处理复杂等问题导致处理成本较高,此外,有机物的存在会加速吸附剂的失活,因此,其实用性受到限制[9]。离子交换法通常可以获得较高的氟去除率,但无法有效地去除有机物,且离子交换树脂再生困难以及树脂再生产生二次污染的问题难以解决[1],并不适用于处理大量含有有机物的氟污染矿井水。电渗析法通过电解和交换除去水体中的杂质,但该方法存在废水处理产能低、能耗大以及工业化推广应用困难的问题。反渗透法通过渗透膜可以将水体中的细微杂质粒子去除,但却存在使用条件苛刻,需要前置预处理以及膜更换频繁、二次浓水难以妥善处理等。混凝工艺操作简单,可以有效地实现氟化物的去除。此外,混凝对天然有机物的去除也展现出优势,因此,选用混凝法对含有有机物的矿井废水进行处理更具有实际意义。目前广泛应用于除氟的混凝剂主要为铝基混凝剂,主要包括单体铝和聚合态铝。单体铝混凝剂有AlCl3、Al2SO3等,聚合态铝混凝剂主要包括聚合氯化铝(PAC)、Al13O14(OH)24(H2O)127+(Al13)等。单体铝混凝剂的使用往往伴随着出水余铝浓度过高的问题,高浓度的铝对人体有害,甚至会损伤人体的中枢神经系统。Al13已被多次证实可以高效去除氟化物,且出水能维持较低的余铝浓度。此外,陈孟等[10]证实,聚合态铝对三卤甲烷前体物具有良好的去除效果。
由于天然有机物是极其复杂的混合物,腐殖酸(HA)通常作为研究模型来代替天然有机物进行研究[11]。在本研究中,以腐殖酸为代表,对影响混凝过程的主要因素,包括混凝剂的投加量、水体pH和水样性质等,进行了逐一探究,系统地考察了腐殖酸的存在对铝系混凝剂去除氟化物机制的影响,以期为含氟矿井水的处理提供参考。
水中腐殖酸对Al13混凝除氟的影响
Effects of humic acid on fluoride removal by Al13 coagulation
-
摘要: 针对含氟矿井水中有机物含量较高的问题,使用混凝区域图研究了在腐殖酸(HA)存在的条件下Al13混凝除氟的效果及相关的影响因素;使用电喷雾飞行时间质谱(ESI-TOF-MS)、差分吸收光谱法(DOAS)和X射线光电子能谱分析(XPS)考察了HA与F在混凝过程中的竞争关系,且表征了Al13与F的络合产物;分析了HA影响Al13除氟的可能机理。结果表明:在最佳投加量下,Al13对氟的去除率在HA共存时提高了10%以上,余铝浓度下降;同时,混凝过程中所形成的絮体结合更加紧密且易沉降。DOAS分析结果表明,在混凝初始阶段,HA对Al13的竞争具有一定的优势,此时主要形成Al13与有机物的络合体;随着反应的继续进行,Al13水解产生低聚态铝,此时氟主要通过与Al-OH的离子交换被去除,同时通过有机物絮体的网捕与吸附架桥作用进一步吸附游离态氟。Abstract: In order to improve the fluoride removal efficiency for fluorine-containing mine water with high organics content by using Al13 coagulation, the coagulation area diagram was used to study the fluoride removal effect by Al13 coagulation in the presence of humic acid (HA) and the related influencing factors. In order to investigate the mechanism of the influence of organic matter on the defluorination of Al13, electrospray time-of-flight mass spectrometry (ESI-TOF-MS), differential absorption spectroscopy (DOAS), and X-ray photoelectron spectroscopy (XPS) were used to analyze the competitive relationship between HA and fluoride in the coagulation process, and the complex product between Al13 and F was also characterized. The results indicated that at the optimal Al13 dosage, the removal rate of fluorine increased by over 10% in the presence of HA, the residual aluminum content decreased. The flocs formed in the coagulation process were compacted and easily settled. According to DOAS analysis, at the beginning of the coagulation, HA had an advantage in the competition with Al13, and Al13 -organic matter complex mainly occurred. As the reaction continued, Al13 was hydrolyzed to produce oligomeric Al nuclear material, and fluoride was mainly removed by ion exchange with Al-OH. At the same time, the flocs formed in the coagulation process containing organic matter further adsorbed free fluorine by netting and adsorption bridging effects.
-
Key words:
- humic acid /
- fluoride /
- coagulation /
- flocs /
- residual aluminum
-
表 1 在ESI-TOF-MS质谱中鉴定出的物种
Table 1. Identified species in ESI-TOF-MS spectra
质荷比 铝种类 分子式 质荷比 铝种类 分子式 81 Al1 Al(OH)F(H2O)+ 277 Al4 Al4O5(OH)(H20)4+ 83 Al1 AlF2(H2O)+ 170 Al5 Al5O5(OH)2F(H2O)42+ 115 Al1 Al(OH)2(H2O)3+ 196 Al5 Al5(OH)13H2O2+ 117 Al1 Al(OH)F(H2O)3+ 184 Al7 Al7O8(OH)32+ 139 Al2 Al2O2(OH)(H2O)2+ 298 Al9 Al9O4(OH)172+ 152 Al2 Al2(OH)3F(H2O)102+ 352 Al12 Al12O11(OH)122+ 153 Al2 Al2(OH)2F2(H2O)102+ 213 Al13 AlO4Al12O143+ 154 Al2 Al2(OH)F3(H2O)102+ 228 Al13 AlO4Al12O12F43+ 155 Al2 Al2F4(H2O)102+ 232 Al13 AlO4Al12O11(OH)4F23+ 163 Al2 Al2OF3(H2O)2+ 328 Al13 AlO4Al12O14(OH)2+ 175 Al2 Al2O2(OH)(H2O)4+ 329 Al13 AlO4Al12O14F2+ 173 Al3 Al3O(OH)4F(H2O)92+ 337 Al13 AlO4Al12O13(OH)32+ 183 Al3 Al3O3(OH)F(H2O)+ 339 Al13 AlO4Al12O13(OH)F22+ 219 Al3 Al3O3(OH)F(H2O)3+ 349 Al13 AlO4Al12O12(OH)2F32+ 223 Al3 Al3O2(OH)F3(H2O)2+ 357 Al13 AlO4Al12O11(OH)5F22+ 237 Al3 Al3O3(OH)F(H2O)4+ 365 Al13 AlO4Al12O10(OH)8F2+ 239 Al3 Al3O3F2(H2O)4+ 366 Al13 AlO4Al12O10(OH)7F22+ 241 Al3 Al3O2(OH)F3(H2O)3+ 379 Al13 AlO4Al12O11(OH)F(H2O)22+ 表 2 混凝絮体主要元素含量对比
Table 2. Comparison of main element content of coagulation floc
TOC/(mg·L−1) C/% Al/% O/% F/% 0.0 — 5.81 93.87 0.32 4.0 36.18 20.09 41.35 2.38 -
[1] 刘锐平. 饮用水氟污染控制原理与技术[J]. 应用生态学报, 2019, 30(1): 30-36. [2] BHATNAGAR A, KUMAR E, SILLANPÄÄ M. Fluoride removal from water by adsorption: A review[J]. Chemical Engineering Journal, 2011, 171(3): 811-840. doi: 10.1016/j.cej.2011.05.028 [3] 杨彪. 高氟病区水氟与土壤、作物氟积累的相关关系研究[D].太原: 山西大学, 2012. [4] 袁航, 石辉. 矿井水资源利用的研究进展与展望[J]. 水资源与水工程学报, 2008,19(5): 50-57. [5] VISWANATHAN N, MEENAKSHI S. Selective fluoride adsorption by a hydrotalcite/chitosan composite[J]. Applied Clay Science, 2010, 48(4): 607-611. doi: 10.1016/j.clay.2010.03.012 [6] 张威, 杨胜科, 费晓华. 反渗透技术去除地下水中氟的方法[J]. 长安大学学报(自然科学版), 2002,22(6): 116-118. [7] ISLAM M, PATEL R K. Evaluation of removal efficiency of fluoride from aqueous solution using quick lime[J]. Journal of Hazardous Materials, 2007, 143(1): 303-310. [8] LOGANATHAN P, VIGNESWARAN S, KANDASAMY J, et al. Defluoridation of drinking water using adsorption processes[J]. Journal of Hazardous Materials, 2013, 248-249: 1-19. doi: 10.1016/j.jhazmat.2012.12.043 [9] MEDELLIN-CASTILLO N A, LEYVA-RAMOS R, PADILLA-ORTEGA E, et al. Adsorption capacity of bone char for removing fluoride from water solution: Role of hydroxyapatite content, adsorption mechanism and competing anions[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 4014-4021. doi: 10.1016/j.jiec.2013.12.105 [10] 陈孟, 张克峰, 张英芹, 等. 铝盐、铁盐和钛盐混凝对三卤甲烷前体物的去除研究[J]. 现代化工, 2021, 41(9): 178-184. [11] 王东升, 安广宇, 刘丽冰, 等. Al13 的分子学及其在环境工程中的应用[J]. 环境工程学报, 2018, 12(6): 1565-1584. doi: 10.12030/j.cjee.201803169 [12] 象豫, 徐慧, 李昆, 等. 铜绿微囊藻对混凝除氟的促进作用及机理分析[J]. 中国环境科学, 2021, 41(4): 1900-1908. doi: 10.3969/j.issn.1000-6923.2021.04.045 [13] XIANG Y, XU H, LI C F, et al. Effects and behaviors of Microcystis aeruginosa in defluorination by two Al-based coagulants, AlCl3 and Al13[J]. Chemosphere, 2022, 286: 131865. doi: 10.1016/j.chemosphere.2021.131865 [14] YU W Z, GREGORY J, GRAHAM N. Regrowth of broken hydroxide flocs: Effect of added fluoride[J]. Environmental Science & Technology, 2016, 50(4): 1828-1833. [15] GAO Y, YAN M, KORSHIN G. Effects of calcium on the chromophores of dissolved organic matter and their interactions with copper[J]. Water Research, 2015, 81: 47-53. doi: 10.1016/j.watres.2015.05.038 [16] SHI B, WEI Q, WANG D, et al. Coagulation of humic acid: The performance of preformed and non-preformed Al species[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 296(1/2/3): 141-148. [17] KAZPARD V, LARTIGES B S, FROCHOT C, et al. Fate of coagulant species and conformational effects during the aggregation of a model of a humic substance with Al13 polycations[J]. Water Research, 2006, 40(10): 1965-1974. doi: 10.1016/j.watres.2006.03.014 [18] YAN M, KORSHIN G V. Comparative examination of effects of binding of different metals on chromophores of dissolved organic matter[J]. Environmental Science & Technology, 2014, 48(6): 3177-3185. [19] YAN M, BENEDETTI M F, KORSHIN G V. Study of iron and aluminum binding to Suwannee River fulvic acid using absorbance and fluorescence spectroscopy: Comparison of data interpretation based on NICA-Donnan and Stockholm humic models[J]. Water Research, 2013, 47(14): 5439-5446. doi: 10.1016/j.watres.2013.06.022 [20] YAN M, WANG D, KORSHIN G V, et al. Quantifying metal ions binding onto dissolved organic matter using log-transformed absorbance spectra[J]. Water Research, 2013, 47(7): 2603-2611. doi: 10.1016/j.watres.2013.02.044 [21] FENG C, BI Z, TANG H. Electrospray ionization time-of-flight mass spectrum analysis method of polyaluminum chloride flocculants[J]. Environmental Science & Technology, 2015, 49(1): 474-480. [22] HE Z, LAN H, GONG W, et al. Coagulation behaviors of aluminum salts towards fluoride: Significance of aluminum speciation and transformation[J]. Separation and Purification Technology, 2016, 165: 137-144. doi: 10.1016/j.seppur.2016.01.017 [23] WANG X, ZHANG G, FU X, et al. Aggregation and dissociation of aqueous Al13 induced by gluoride dubstitution[J]. Environmental Science & Technology, 2017, 51(11): 6279-6287. [24] HU C Y, LO S L, KUAN W H. Effects of the molar ratio of hydroxide and fluoride to Al(III) on fluoride removal by coagulation and electrocoagulation[J]. Journal of Colloid and Interface Science, 2005, 283(2): 472-476. doi: 10.1016/j.jcis.2004.09.045 [25] GONG W, QU J, LIU R, et al. Effect of aluminum fluoride complexation on fluoride removal by coagulation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395: 88-93. [26] ZHANG X, WU Y, LIU G, et al. Investigation on sol–gel boehmite-AlOOH films on Kapton and their erosion resistance to atomic oxygen[J]. Thin Solid Films, 2008, 516(15): 5020-5026. doi: 10.1016/j.tsf.2008.01.023 [27] SAHOO N G, CHENG H K F, LI L, et al. Specific functionalization of carbon nanotubes for advanced polymer nanocomposites[J]. Advanced Functional Materials, 2009, 19(24): 3962-3971. doi: 10.1002/adfm.200901486 [28] WANG X, ZHANG G, LAN H, et al. Preparation of hollow Fe-Al binary metal oxyhydroxide for efficient aqueous fluoride removal[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520: 580-589. [29] WANG X, XU H, WANG D. Mechanism of fluoride removal by AlCl3 and Al13: The role of aluminum speciation[J]. Journal of Hazardous Materials, 2020, 398: 122987. doi: 10.1016/j.jhazmat.2020.122987