-
地下水硝酸盐污染已成为当前不可忽视的环境地质问题之一,具有受人类胁迫、来源广、迁移能力强、污染途径复杂等特点[1-2]。据调查,我国北方环渤海7省(市)的地下水硝酸盐超标率达34.0%[3],华北平原地下水硝酸盐超标率达18.9%[4]。南方的滇池流域,以及长沙、成都、合肥、杭州和桂林等城市周边地区均存在地下水硝酸盐超标问题。其中,长沙周边地下水硝态氮质量浓度最高值达77.5 mg·L−1[5],桂林东部农村地下水硝态氮质量浓度最高达到46.6 mg·L−1[6]。农村生活污水和畜禽养殖废水及固体废物是重要的地下水硝酸盐污染来源。有研究[7-8]表明,地下水中的硝酸盐主要来源于农村生活污水和粪肥。这些含氮物质可在微生物作用下转化为迁移能力很强的硝酸盐,并持续地渗入地下,且超过了自然净化能力,使得地下水中的硝酸盐持续富集[9]。硝酸盐污染对地下饮用水源的安全构成了威胁,人体长期摄入较高浓度的硝酸盐会导致高铁血红蛋白症、“蓝色婴儿”症和癌症等病症[10-11]。为此,我国限定了地下饮用水中的硝酸盐质量浓度,要求硝态氮低于20 mg·L−1。
自然净化作用不足以完全去除下渗的硝酸盐,这主要是受限于缺氧环境和有机质碳源[12]。硝酸盐自然净化过程一般通过反硝化微生物进行,而反硝化微生物大都属于缺氧异养型,需要缺氧条件和有机质碳源。为此,可通过添加有机质以强化微生物反硝化作用。有机质碳源可分为液体型和固体型[13]。液体碳源具有操作复杂、成本高、副反应大等缺点[14]。固体碳源可避免上述缺点,而且契合了农村硝酸盐污染的特点。农村硝酸盐污染具有分散广、规模小、维护管理难和空间异质性特点。基于此,针对农村重要污染源,在其附近构建基于固体碳源的强化生物反硝化带,是一种阻控地表硝酸盐下渗的有效策略。
固相反硝化是利用固体有机质作为微生物载体,并释放出溶解性有机质作为碳源,将硝酸盐还原为氮气[15]。固体碳源可分为人工合成高聚物、天然物质和改性天然物质[16]。其中,木质生物质具有易获取、成本低、寿命长、碳氮比高等特点,是目前研究和应用最为广泛的天然材料[16]。但是,木质生物质碳源受组分和结构特征的限制,释碳速率缓慢,导致反硝化速率很低[17]。木质生物质主要包括木质素和综纤维素(纤维素和半纤维素)。综纤维素为反硝化碳源的有效组分,但受到木质素的阻碍而无法被利用。木质素作为一种芳香族化合物,难以被微生物利用,并通过紧密缠结的结构保护了综纤维素[18]。为此,可通过去除木质素改变木质生物质的组成和结构,增强综纤维素的生物可利用性[19-20]。
在造纸、生物燃料等行业,针对木质生物质中木质素的去除已有很多方法。其中,氢氧化钙和过氧乙酸处理可以有效去除木质素,保留固态综纤维素[21]。氢氧化钙处理主要是通过破坏木质素和综纤维素之间的酯键,溶解去除木质素,增加比表面积[22]。氢氧化钙处理具有成本低、安全、可回收等特点。但是,在温和反应条件下氢氧化钙处理只能去除部分木质素[23-24],因而限制了生物可利用性的提高幅度。为此,可采用过氧乙酸处理进一步提高木质生物质的生物可利用性,进而提高作为碳源时的反硝化速率。另外,固体碳源释碳量过大可能导致出水中有机物、氨氮等污染[25]。因此,木质碳源的释碳量最好能够根据反硝化生物利用碳的速率进行调控。
本研究基于农村硝酸盐污染的特点,开发了改性碎木碳源,研究了地下水微生物在碎木碳源条件下的强化生物反硝化行为。采用氢氧化钙和过氧乙酸对白杨碎木进行了化学处理,以改变该生物质的组分与结构,加快其作为反硝化碳源时的释碳速率,并通过改变化学处理条件来调控木质碳源的释碳能力。最后,通过木质碳源的反硝化批量实验评估了其对反硝化的强化效能,分析了可能的二次污染问题,以期为防控农村地区地下水硝酸盐污染提供参考。
木质碳源释碳能力的优化及其对地下水生物反硝化的强化效果
Optimization of carbon release capacity of wood carbon source and its enhancement on biological denitrification efficiency of groundwater
-
摘要: 木质生物质碳源适用于防控农村地下水硝酸盐污染,但存在因释碳能力差而导致反硝化效率低的问题。为此,采用氢氧化钙和过氧乙酸对碎木进行了处理,测定了处理后碎木还原糖产量和化学组分,验证了处理碎木在作为碳源时的反硝化强化效能。结果表明:0.1~1 mm的未处理碎木,其还原糖产量为13.9 mg·g−1;经氢氧化钙处理后,其还原糖产量可提升至未处理碎木的8.0倍;在氢氧化钙处理的基础上再用过氧乙酸进行处理后,其还原糖产量可提升至未处理碎木的43.4倍,并能够通过改变处理条件而控制提升倍数;处理后碎木碳源的木质素含量与还原糖产量呈显著的线性负相关,相关系数大于0.98;在提高8.0倍还原糖产量的碎木碳源条件下,生物反硝化速率达到1.7 mg·(g·d)−1,是未处理碎木碳源的4.3倍;碎木碳源的还原糖产量提高43.4倍后,反硝化速率并未进一步得到提高,还导致了有机物和氨氮的污染。Abstract: Woody biomass is applicable to nitrate pollution control in rural area. However, the denitrification rate is low for woody carbon source due to its poor capacity of carbon release. Therefore, woodchip was pretreated with calcium hydroxide and peracetic acid, its reducing sugar yield and chemical compositions were determined, and its enhancement on denitrification efficiency was verified. The results showed that the reducing sugar yield was 13.9 mg·g−1 for untreated woodchip (0~0.1 mm), and it was increased to 8.0 times after calcium hydroxide pretreatment and 43.4 times after calcium hydroxide and peracetic acid pretreatment. The increase of reducing sugar yield could be regulated by changing the chemical pretreatment conditions. A significant linear correlation occurred between the lignin content and the reducing sugar yield for pretreatment woodchip, the corresponding correlation coefficient exceeded 0.98. The denitrification rate could reach 1.7 mg·(g·d)−1 for the pretreatment woodchip with 8.0 times reducing sugar yield, which was 4.3 times as high as that the untreated woodchip. However, for the pretreatment woodchip with 43.4 times reducing sugar yield, its denitrification rate did not increase further, while the pollution of organic matter and ammonia nitrogen occurred.
-
Key words:
- rural pollution /
- nitrate /
- denitrification /
- woody carbon source /
- reducing sugar
-
表 1 碎木化学处理条件的设计
Table 1. Experimental design of chemical treatment for woodchip
处理名称 碎木粒级/mm 反应时间/h 药剂投加量/(g·g−1) ST 0.038~0.1,0.1~1,1~10 24 0,0.03,0.06,0.1,0.15,0.2 ST 0.038~0.1,0.1~1,1~10 6,12,24,36,48,72 0.1 PT,SPT 0.1~1 24 0,0.05,0.1,0.2,0.3,0.5,0.75,1.0 PT,SPT 0.1~1 4,6,8,12,24,48 0.5 注:ST、PT和SPT依次为氢氧化钙、过氧乙酸和2种药剂组合处理。 表 2 不同处理碎木的化学组分及还原糖产量
Table 2. Chemical components and reducing sugar yield in various pretreatment woodchip
碎木处理程度 化学组分/% 还原糖产量/
(mg·g−1)中性洗涤剂溶解物 纤维素 半纤维素 木质素 灰分 UT 4.5±0.4 54.1±1.1 14.3±0.9 26.8±0.2 0.3±0.0 13.9±0.1 ST 0.06 4.4±0.6 57.4±1.3 12.4±1.2 25.2±0.1 0.5±0.0 86.0±2.7 ST 0.1 8.5±0.2 58.9±1.0 9.9±1.9 22.2±0.9 0.5±0.0 112.1±0.9 SPT 0.05 9.6±0.1 55.5±0.9 12.5±0.8 21.8±0.0 0.6±0.1 212.7±0.4 SPT 0.1 15.3±0.6 55.0±1.6 14.2±1.5 14.7±0.2 0.7±0.1 285.9±1.7 SPT 0.2 15.9±0.2 62.1±1.9 11.8±0.2 9.5±2.2 0.6±0.1 408.8±1.9 SPT 0.5 13.4±0.6 67.6±0.3 16.0±0.5 2.8±0.1 0.2±0.0 603.9±2.4 注:UT为未处理;ST 0.06和ST 0.1分别表示每克碎木的氢氧化钙投加量为0.06 g和0.1 g;SPT为对ST 0.1的2次处理,SPT 0.05、SPT
0.1、SPT 0.2和SPT 0.5分别表示每克碎木的过氧乙酸投加量为0.05、0.1、0.2和0.5 g 。 -
[1] 王仕琴, 郑文波, 孔晓乐. 华北农区浅层地下水硝酸盐分布特征及其空间差异性[J]. 中国生态农业学报, 2018, 26(10): 1476-1482. [2] 傅雪梅, 孙源媛, 苏婧, 等. 基于水化学和氮氧双同位素的地下水硝酸盐源解析[J]. 中国环境科学, 2019, 39(9): 3951-3958. doi: 10.3969/j.issn.1000-6923.2019.09.042 [3] 赵同科, 张成军, 杜连凤, 等. 环渤海七省(市)地下水硝酸盐含量调查[J]. 农业环境科学学报, 2007, 26(2): 779-783. doi: 10.3321/j.issn:1672-2043.2007.02.072 [4] 李晓欣, 王仕琴, 陈肖如, 等. 北方区域尺度地下水-包气带硝酸盐分布与变化特征[J]. 中国生态农业学报(中英文), 2021, 29(1): 208-216. [5] 熊江波, 李雁勇, 王翠红, 等. 长沙市城区周边地区地下水硝酸盐态氮含量及污染状况评价[J]. 湖南农业科学, 2010(7): 88-90. doi: 10.3969/j.issn.1006-060X.2010.07.027 [6] 秦金月, 刘吉刚, 胡荣庭, 等. 岩溶区农村地下水硝酸盐污染分布特征及原因浅析[J]. 西部皮革, 2020, 42(24): 3-4. [7] 曹胜伟, 费宇红, 田夏, 等. 硝酸盐污染氮氧同位素溯源及贡献率分析-以南阳地区为例[J]. 水文地质工程地质, 2019, 46(2): 82-91. [8] 汪银龙, 冯民权, 董向前. 汾河下游雨季硝酸盐污染源解析[J]. 环境科学, 2019, 40(9): 4033-4041. [9] SOLOMON K M H, RENE E R, ERIC D V H, et al. Nitrate removal from groundwater: A review of natural and engineered processes[J]. Journal of Water Supply:Research and Technology - Aqua, 2018, 67(8): 885-902. doi: 10.2166/aqua.2018.194 [10] MATHEWSON P D, EVANS S, BYRNES T, et al. Health and economic impact of nitrate pollution in drinking water: A Wisconsin case study[J]. Environmental Monitoring and Assessment, 2020, 192(11): 724. doi: 10.1007/s10661-020-08652-0 [11] HORD N G. Dietary nitrates, nitrites, and cardiovascular disease[J]. Current Atherosclerosis Reports, 2011, 13(6): 484-492. doi: 10.1007/s11883-011-0209-9 [12] LÓPEZ-AVILÉS G, ALMENDARIZ-TAPIA F J, MEZA-ESCALANTE E R, et al. Simultaneous denitrification and methanogenesis in an anaerobic expanded bed reactor[J]. Revista Mexicana de Ingeniería Química, 2017, 16(1): 281-290. [13] 黄有文, 张立秋, 李淑更, 等. 固体碳源生物膜处理低碳城市污水脱氮性能[J]. 水处理技术, 2017, 43(11): 98-102. [14] 高欣东, 冯婧微, 李春华, 等. 水处理过程中外加碳源类型及其影响因素研究进展[J]. 现代化工, 2020, 40(S1): 26-32. [15] ZHANG Q, CHEN X, WU H, et al. Comparison of clay ceramsite and biodegradable polymers as carriers in pack-bed biofilm reactor for nitrate removal[J]. International Journal of Environmental Research and Public Health, 2019, 16(21): 4184. doi: 10.3390/ijerph16214184 [16] WANG J L, CHU L B. Biological nitrate removal from water and wastewater by solid-phase denitrification process[J]. Biotechnology Advances, 2016, 34(6): 1103-1112. doi: 10.1016/j.biotechadv.2016.07.001 [17] HANG Q Y, WANG H Y, CHU Z S, et al. Application of plant carbon source for denitrification by constructed wetland and bioreactor: Review of recent development[J]. Environmental Science and Pollution Research, 2016, 23(9): 8260-8274. doi: 10.1007/s11356-016-6324-y [18] YAO L, LU Y C, HU H Q, et al. Structural characterization of lignin and its degradation products with spectroscopic methods[J]. Journal of Spectroscopy (Hindawi), 2017, 2017: 1-15. [19] MIYAMOTO T, MIHASHI A, YAMAMURA M, et al. Comparative analysis of lignin chemical structures of sugarcane bagasse pretreated by alkaline, hydrothermal, and dilute sulfuric acid methods[J]. Industrial Crops and Products, 2018, 121: 124-131. doi: 10.1016/j.indcrop.2018.04.077 [20] TARASOV D, LEITCH M, FATEHI P. Lignin-carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review[J]. Biotechnology for Biofuels, 2018, 11(1): 269. doi: 10.1186/s13068-018-1262-1 [21] YIMLAMAI B, CHOORIT W, CHISTI Y, et al. Cellulose from oil palm empty fruit bunch fiber and its conversion to carboxymethylcellulose[J]. Journal of Chemical Technology and Biotechnology, 2021, 96(6): 1656-1666. doi: 10.1002/jctb.6689 [22] 翟旭航, 李霞, 元英进. 木质纤维素预处理及高值化技术研究进展[J]. 生物技术通报, 2021, 37(3): 162-174. [23] 秦影, 傅英娟, 秦梦华. 木质纤维素生物质精炼的研究进展[J]. 大连工业大学学报, 2018, 37(3): 171-178. [24] SIERRA R S, HOLTZAPPLE M T, GRANDA C B. Long-term lime pretreatment of poplar wood[J]. Aiche Journal, 2011, 57(5): 1320-1328. doi: 10.1002/aic.12350 [25] LI P, ZUO J N, WANG Y J, et al. Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium[J]. Water Research, 2016, 93: 74-83. doi: 10.1016/j.watres.2016.02.009 [26] HU R T, ZHENG X L, XIN J, et al. Selective enhancement and verification of woody biomass digestibility as a denitrification carbon source[J]. Bioresource Technology, 2017, 244(Pt 1): 313-319. [27] LEE H R, LEE H W, LEE Y W, et al. Improved pretreatment of yellow poplar biomass using hot compressed water and enzymatically-generated peracetic acid[J]. Biomass and Bioenergy, 2017, 105: 190-196. doi: 10.1016/j.biombioe.2017.07.004 [28] CHU Q L, SONG K, BU Q, et al. Two-stage pretreatment with alkaline sulphonation and steam treatment of Eucalyptus woody biomass to enhance its enzymatic digestibility for bioethanol production[J]. Energy Conversion and Management, 2018, 175: 236-245. doi: 10.1016/j.enconman.2018.08.100 [29] KIM J S, LEE Y Y, KIM T H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass[J]. Bioresource Technology, 2016, 199: 42-48. doi: 10.1016/j.biortech.2015.08.085 [30] CHOI J H, PARK S Y, KIM J H, et al. Selective deconstruction of hemicellulose and lignin with producing derivatives by sequential pretreatment process for biorefining concept[J]. Bioresource Technology, 2019, 291: 121913. doi: 10.1016/j.biortech.2019.121913 [31] 冯萃敏, 张欣蕊, 孙丽华, 等. PAC-UF工艺的膜污染特性及膜污染物质研究[J]. 给水排水, 2015, 51(3): 125-131. [32] 闫晓寒, 文威, 解莹, 等. 溶解性有机物特性及在国内的污染研究现状[J]. 环境科学与技术, 2020, 43(6): 169-178. [33] WANG H S, CHEN N, FENG C P, et al. Insights into heterotrophic denitrification diversity in wastewater treatment systems: Progress and future prospects based on different carbon sources[J]. Science of the Total Environment, 2021, 780: 146521-146521. doi: 10.1016/j.scitotenv.2021.146521 [34] HU R T, ZHENG X L, ZHENG T Y, et al. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification[J]. Journal of Environmental Management, 2019, 246: 832-839. [35] 雷志娟, 张立秋, 王登敏, 等. 预处理方法对玉米芯静态反硝化特性的影响及微生物群落分析[J]. 现代化农业, 2019(9): 33-36. doi: 10.3969/j.issn.1001-0254.2019.09.018 [36] 范天凤, 董伟羊, 赵转军, 等. 改性枸杞枝作为反硝化脱氮碳源的研究[J]. 环境科学学报, 2021, 41(9): 3513-3520. [37] ADAV S S, LEE D J, LAI J Y. Enhanced biological denitrification of high concentration of nitrite with supplementary carbon source[J]. Applied Microbiology and Biotechnology, 2010, 85(3): 773-778. doi: 10.1007/s00253-009-2265-4 [38] RÜTTING T, BOECKX P, MÜLLER C, et al. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle[J]. Biogeosciences, 2011, 8(7): 1779-1791. doi: 10.5194/bg-8-1779-2011 [39] 胡国山, 张建美, 蔡惠军. 碳源、C/N和温度对生物反硝化脱氮过程的影响[J]. 科学技术与工程, 2016, 16(14): 74-77. doi: 10.3969/j.issn.1671-1815.2016.14.015