-
近年来,在污水和自然水体中频繁发现各种与人类生产生活息息相关、质量浓度在ng·L−1~μg·L−1的微量有机污染物被检出,这些微量有机物逐渐受到广泛关注[1-2]。微量有机物主要包括医药药物、个人护理品、农药、工业添加剂、内分泌干扰物以及饮用水消毒副产物等[3]。虽然污水和自然水体中微量有机物含量远低于氮磷等常规污染物,但由于其具有较大的毒性和更高的环境风险以及对人类可能存在的健康隐患而备受关注。因此,在水处理过程中对微量有机物的去除尤为重要。
作为水处理的常用工艺,微滤虽然可以有效去除浊度、悬浮颗粒物等污染物,但对于微量有机物的去除则非常有限。外加电场与膜分离工艺相结合,可以提高对微量有机物的去除效果。一方面,电场力作用可以使得水中的带电荷有机物发生定向迁移,减少或增加膜表面的微量有机物附着[4];另一方面,尤其是在沿海地区,因水中含有的较高浓度的氯离子,可在电极表面氧化生成活性氯组分,因而可氧化去除微量有机物[5]。
虽然很多研究者采用电化学结合膜过滤系统在处理微量有机物方面获得了优异的去除效果,但大多数报道主要将氧化过程作为关注点[6-7],而对于电场所具有的物理特性诸如电场力、电极吸附等作用以及分离膜本身对微量有机物的去除特点的研究较少。电场力对带电荷微量有机物的定向迁移作用可以减少出水中的微量有机物含量,提高整个系统的去除效果[8-9]。虽然微滤对于微量有机物去除效果有限,并且膜吸附去除作用集中于过滤前期,但研究这一过程对于考察膜本身对不同微量有机物的去除机理仍有意义。此外,很多研究者采用的微量有机物质量浓度(mg·L−1)远高于实际水中的质量浓度(ng·L−1~μg·L−1级),这样很容易忽视微滤吸附作用对整体去除效果的贡献。针对单一的目标有机物的去除研究虽然有利于解析其在电化学过程中的降解途径,但实验设定并不符合实际过程中多种低浓度微量有机物共存的复杂情况。目前也少有研究将微滤和电化学过程相结合用来同时去除低浓度的多种微量有机物。
因此,本研究选取实际污水处理厂二级出水中经常检出的5种微量有机物:舒必利、咖啡因、美托洛尔、利古隆以及卡马西平作为目标有机物[10-11],并对该污水处理厂二级出水取样3次,测得上述有机物的质量浓度分别为(387.1±8.7)、(35.8±1.7)、(442.2±47.4)、(14.9±3.0)和(151.0±27.2) ng·L−1。基于上述浓度水平,本研究采用500 ng·L−1作为进水浓度,用来考察微滤结合电场对微量有机物的处理效果。首先,探究了不同膜材料、酸碱度以及不同离子添加条件下微滤短期过滤对微量有机物的去除效果,解析了不同性质微量有机物的膜吸附机理;其次,通过改变电压和添加氯捕获剂来进一步了解单独电场、电化学氧化以及电极吸附作用对微量有机物的去除效果;最后,将微滤和电场整合在单一装置中,对比研究了电极和膜的空间位置关系对微量有机物去除效果的影响以及对膜表面可能存在的电化学侵蚀。
电场强化微滤工艺去除水中微量有机物的效果
Removal of trace organic compounds in water by an electric field enhanced microfiltration
-
摘要: 微滤工艺虽然可以有效去除浊度、悬浮颗粒物等污染物,但对于微量有机物的去除则非常有限。外加电场与膜分离相结合,可以提高对微量有机物的去除效果。为此,研究了单独微滤、单独电场以及电场结合微滤3种工艺对水中5种典型低浓度微量有机物(舒必利、咖啡因、美托洛尔、利古隆、卡马西平)的去除效果;并考察了不同膜材料、进水中离子种类、进水离子浓度以及pH条件对微量有机物去除效果的影响。结果表明,微滤主要通过吸附作用去除水中微量有机物,吸附机理主要包括疏水性相互作用和静电引力作用,分别对应去除疏水性微量有机物(利古隆和卡马西平)和带正电荷微量有机物(舒必利和美托洛尔),而且微量有机物还可能通过与微滤膜表面形成的氢键,被吸附在膜表面。在单独电场中,电场力可以促进微量有机物在电极上的吸附,同时阳极上生成的总氯氧化剂也能强化微量有机物的去除,在3 V电压下微量有机物的去除率可以达到44.2%~82.8%。电场结合微滤可以明显提高微量有机物的去除效果。在外加电压为3 V时,在进水依次通过阴极、阳极以及膜片的模式下,可以实现对微量有机物90%以上的去除率,但阳极生成的总氯对膜表面造成的侵蚀可能会减少膜的使用寿命。Abstract: Although microfiltration can effectively remove turbidity and suspended particulate matters, its trace organic compounds removal was very limited. The combination of applied electric field and microfiltration could improve the removal effect of trace organic compounds. The removal of five typical low concentration trace organic compounds (sulpiride, caffeine, metoprolol, linuron, and carbamazepine) in water by three processes of sole microfiltration, sole electric field, and electric field combined microfiltration were investigated. The effects of membrane material, ion species, ion concentration, and pH in the feed water on the removal of trace organic compounds were studied. The results showed that membrane adsorption was the main approach for trace organic compounds removal. The adsorption mechanism included hydrophobic interaction and electrostatic attraction, which corresponded to the removal of hydrophobic trace organic compounds (linuron and carbamazepine) and positively charged trace organic compounds (sulpiride and metoprolol), respectively. Moreover, the formation of hydrogen bonds between trace organic compounds and the membrane surface could enhance the adsorption of trace organic compounds on the membrane. In the sole electric field, the electric field force promoted the adsorption of trace organic compounds on the electrodes, and the chlorine generated on the anode could also strengthen the removal of trace organic compounds. At 3 V, the removal rate of trace organic compounds was 44.2%~82.8%. Electric field combined with microfiltration could significantly improve the removal of trace organic compounds. In the mode of the feed water successively passed through the cathode, anode, and membrane, and over 90% removal rate of trace organic compounds occurred when 3 V voltage was applied. However, the corrosion on the membrane surface by chlorine produced on anode might reduce the service life of the membrane.
-
Key words:
- microfiltration /
- electric field /
- trace organic compounds /
- water treatment
-
表 1 目标微量有机物的基本信息及物理化学性质
Table 1. Basic information and physicochemical properties of the target TrOCs
微量有机物 分子式 分子质量/Da pKa(25 °C)1) 氢键
供体1)酸性 碱性 舒必利 C15H23N3O4S 341.43 9.98±0.0 8.97±0.50 3 咖啡因 C8H10N4O2 194.19 — 0.52±0.70 0 美托洛尔 C15H25NO3 267.36 13.89±0.20 9.43±0.10 2 利古隆 C9H10Cl2N2O2 249.09 12.13±0.70 −1.04±0.50 1 卡马西平 C15H12N2O 236.27 13.94±0.20 −0.49±0.20 2 注:1)表示pKa以及氢键供体数据来自SciFinder Scholar (ACS)数据库。 -
[1] DU Y J, XU X, LIU Q Z, et al. Identification of organic pollutants with potential ecological and health risks in aquatic environments: Progress and challenges[J]. Science of the Total Environment, 2022, 806: 150691. doi: 10.1016/j.scitotenv.2021.150691 [2] SAIDULU D, GUPTA B, GUPTA A K, et al. A review on occurrences, eco-toxic effects, and remediation of emerging contaminants from wastewater: Special emphasis on biological treatment-based hybrid systems[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105282. doi: 10.1016/j.jece.2021.105282 [3] ROUT P R, ZHANG T C, BHUNIA P, et al. Treatment technologies for emerging contaminants in wastewater treatment plants: A review[J]. Science of the Total Environment, 2021, 753: 141990. doi: 10.1016/j.scitotenv.2020.141990 [4] LI C, ZHANG M H, SONG C W, et al. Enhanced treatment ability of membrane technology by integrating an electric field for dye wastewater treatment: A review[J]. Journal of AOAC International, 2018, 101(5): 1341-1352. doi: 10.5740/jaoacint.18-0050 [5] GANIYU S O, VAN HULLEBUSCH E D, CRETIN M, et al. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review[J]. Separation and Purification Technology, 2015, 156: 891-914. doi: 10.1016/j.seppur.2015.09.059 [6] 孙继成, 吴志超, 王志伟, 等. 电化学耦合膜工艺去除饮用水中卡马西平[J]. 中国环境科学, 2018, 38(1): 193-201. doi: 10.3969/j.issn.1000-6923.2018.01.023 [7] ZHENG J J, MA J J, WANG Z W, et al. Contaminant removal from source waters using cathodic electrochemical membrane filtration: Mechanisms and implications[J]. Environmental Science & Technology, 2017, 51(5): 2757-2765. [8] ENSANO B M B, BOREA L, NADDEO V, et al. Control of emerging contaminants by the combination of electrochemical processes and membrane bioreactors[J]. Environmental Science and Pollution Research, 2019, 26: 1103-1112. doi: 10.1007/s11356-017-9097-z [9] CHEN X, DENG H P. Effects of electric fields on the removal of ultraviolet filters by ultrafiltration membranes[J]. Journal of Colloid and Interface Science, 2013, 393: 429-437. doi: 10.1016/j.jcis.2012.10.055 [10] TRAN N H, REINHARD M, GIN K Y. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions: A review[J]. Water Research, 2018, 133: 182-207. doi: 10.1016/j.watres.2017.12.029 [11] BEXFIELD L M, BELITZ K, LINDSEY B D, et al. Pesticides and pesticide degradates in groundwater used for public supply across the United States: Occurrence and human-health context[J]. Environmental Science & Technology, 2021, 55(1): 362-372. [12] NGHIEM L D, SCHÄFER A I, ELIMELECH M. Pharmaceutical retention mechanisms by nanofiltration membranes[J]. Environmental Science & Technology, 2005, 39(19): 7698-7705. [13] SHAHID M K, KASHIF A, FUWAD A, et al. Current advances in treatment technologies for removal of emerging contaminants from water: A critical review[J]. Coordination Chemistry Reviews, 2021, 442: 213993. doi: 10.1016/j.ccr.2021.213993 [14] ZHAO Y Y, KONG F X, WANG Z, et al. Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes[J]. Frontiers of Environmental Science & Engineering, 2017, 11(6): 20. [15] FUJIOKA T, KODAMATANI H, WANG Y J, et al. Assessing the passage of small pesticides through reverse osmosis membranes[J]. Journal of Membrane Science, 2020, 595: 117577. doi: 10.1016/j.memsci.2019.117577 [16] DOLAR D, DRAŠINAC N, KOŠUTIČ K, et al. Adsorption of hydrophilic and hydrophobic pharmaceuticals on RO/NF membranes: Identification of interactions using FTIR[J]. Journal of Applied Polymer Science, 2017, 134(5): 44426. [17] PINO-SOTO L, SCHWARZ A, VARGAS C, et al. Influence of multivalent-electrolyte metal solutions on the superficial properties and performance of a polyamide nanofiltration membrane[J]. Separation and Purification Technology, 2021, 272: 118846. doi: 10.1016/j.seppur.2021.118846 [18] HE Z W, KASEMSET S, KIRSCHNER A Y, et al. The effects of salt concentration and foulant surface charge on hydrocarbon fouling of a poly(vinylidene fluoride) microfiltration membrane[J]. Water Research, 2017, 117: 230-241. doi: 10.1016/j.watres.2017.03.051 [19] GUR-REZNIK S, KOREN-MENASHE I, HELLER-GROSSMAN L, et al. Influence of seasonal and operating conditions on the rejection of pharmaceutical active compounds by RO and NF membranes[J]. Desalination, 2011, 277(1/2/3): 250-256. doi: 10.1016/j.desal.2011.04.029 [20] SUGIURA Y, SAITO Y, ENDO T, et al. Effect of the ionic radius of alkali metal ions on octacalcium phosphate formation via different substitution modes[J]. Crystal Growth & Design, 2019, 19(7): 4162-4171. [21] LIU Y L, WANG X M, YANG H W, et al. Quantifying the influence of solute-membrane interactions on adsorption and rejection of pharmaceuticals by NF/RO membranes[J]. Journal of Membrane Science, 2018, 551: 37-46. doi: 10.1016/j.memsci.2018.01.035 [22] SUN J Q, HU C Z, TONG T Z, et al. Performance and mechanisms of ultrafiltration membrane fouling mitigation by coupling coagulation and applied electric field in a novel electrocoagulation membrane reactor[J]. Environmental Science & Technology, 2017, 51(15): 8544-8551. [23] RYAN D R, MAHER E K, HEFFRON J, et al. Electrocoagulation-electrooxidation for mitigating trace organic compounds in model drinking water sources[J]. Chemosphere, 2021, 273: 129377. doi: 10.1016/j.chemosphere.2020.129377 [24] SEO H, SON M, SHIN I, et al. Faster dye-adsorption of dye-sensitized solar cells by applying an electric field[J]. Electrochimica Acta, 2010, 55(13): 4120-4123. doi: 10.1016/j.electacta.2010.02.076 [25] DUDCHENKO A V, ROLF J, RUSSELL K, et al. Organic fouling inhibition on electrically conducting carbon nanotube–polyvinyl alcohol composite ultrafiltration membranes[J]. Journal of Membrane Science, 2014, 468: 1-10. doi: 10.1016/j.memsci.2014.05.041 [26] RABILLER-BAUDRY M, LOULERGUE P, GIRARD J, et al. Consequences of membrane aging on real or misleading evaluation of membrane cleaning by flux measurements[J]. Separation and Purification Technology, 2021, 259: 118044. doi: 10.1016/j.seppur.2020.118044