-
在印染行业,未经处理排出的染料废水会对水生环境及人类健康造成了极大的威胁[1-3]。因此,去除印染废水中的染料十分有必要。目前,诸多方法被用于印染废水的净化,如吸附、膜过滤、电化学、生物法[4-7]等。吸附技术因其操作便捷、绿色环保、经济高效、再生性能良好等优点被广泛使用[3,5,8]。开发一种高效、经济可行的吸附材料已成为研究的热点[9]。此外,传统的吸附剂在吸附−分离−循环的使用过程容易损耗,难以固液分离再利用,并易造成二次污染。引入磁性材料构建磁性吸附剂,利用外磁场快速地将吸附剂从水体中分离,能有效解决这个问题[10]。
海藻酸钠(sodium alginate,SA)分子含有羟基和羧基,可与阳离子发生静电吸附,同时产生螯合作用。除此之外,海藻酸钠还能与金属离子反应形成类似“蛋壳”结构的水凝胶,可作为其他吸附剂的良好骨架[11-12]。氧化石墨烯(graphene oxide,GO)因其具有巨大的比表面积,分子表面含有丰富的含氧官能团,亲水性很强,在水中有着良好的分散性,使得氧化石墨烯在废水处理领域可以作为理想的吸附剂[13]。YANG等[14]使用GO去除废水溶液中的亚甲基蓝(methylene blue,MB),在MB初始质量浓度低于250 mg·L−1时,对MB的去除率可达到99%,溶液基本脱色至无色。
基于此,本研究使用改良的Hummers法制备GO,以海藻酸钠为基结合Fe3O4及GO,制备了Fe3O4@SA/GO凝胶球,并对吸附剂进行了系列表征分析,研究了Fe3O4@SA/GO吸附MB动力学以及单因素对吸附剂吸附MB的影响及吸附剂的循环利用性;此外,在不同pH下,研究了吸附剂对含MB与碱性品红(basic fuchsin,CB)共存的废水中染料的去除,以期为处理实际印染废水提供参考。
Fe3O4@SA/GO凝胶球的制备及对亚甲基蓝的吸附性能
Preparation of Fe3O4@SA/GO gel ball and its adsorption performance towards methylene blue
-
摘要: 以海藻酸钠为骨架,结合Fe3O4及氧化石墨烯制备了Fe3O4@SA/GO复合凝胶球。采用SEM、FT-IR、XRD、VSM等对制备的材料进行了表征分析,并且考察了Fe3O4@SA/GO对水中亚甲基蓝的吸附性能。结果表明:Fe3O4@SA/GO凝胶球空隙较多,表面含有丰富的羧基、羟基等含氧官能团;材料磁性能良好,饱和磁化强度达到了17.88 emu·g−1,具有超顺的磁性;在25 ℃、pH=9的条件下,投加量为1 g·L−1的吸附剂对100 mg·L−1亚甲基蓝吸附300 min,吸附率达到了92.4%,吸附量可达94 mg·g−1;吸附过程相对符合伪一级动力学方程,吸附过程偏向于物理吸附;Langmuir等温模型能够更好地反应吸附平衡,吸附以表面单层覆盖为主,最大吸附量为452 mg·g−1;在相同条件下,Fe3O4@SA/GO对混合液中亚甲基蓝的吸附效果优于碱性品红;该吸附剂具有良好的循环利用性能,5次脱附循环使用后对亚甲基蓝的吸附率依旧保持在70%以上。以上研究结果可为处理印染废水提供参考。Abstract: Fe3O4@SA/GO gel ball was prepared with sodium alginate as skeleton, in combination with Fe3O4 and graphene oxide. The magnetic composites were characterized by SEM, FT-IR, XRD and VSM, and its adsorption performance towards methylene blue was also studied. The results showed that many pores was in Fe3O4@SA/GO gel spheres, and the surface of these spheres contained rich oxygen-containing functional groups such as carboxyl and hydroxyl groups. Fe3O4@SA/GO gel spheres had good excellent magnetic and superparamagnetic properties, their saturation magnetization reached 17.88 emu·g−1. The adsorption properties and mechanism of methylene blue(MB) from aqueous solution onto the beads were studied. Under the conditions of 25 ℃, pH=9, 100 mg·L−1 methylene blue, 1 g·L−1 adsorbant, the adsorption rate reach 92.4% after 300 min adsorption, and the adsorption capacity reached 94 mg·g−1. The adsorption kinetics accorded with pseudo-first order kinetic equation, and the adsorption process preferred to a physical adsorption. The adsorption isotherm data were well fitted to Langmuir model and the adsorption was a mainly monolayer one, the maximum adsorption capacity was 452 mg·g−1. Under the same conditions, methylene blue adsorption effect by Fe3O4@SA/GO was superior to basic fuchsin in the dye mixture. The adsorption rate of methylene blue still maintained over 70% after 5 recycling, which indicated that this material had a good recycling ability. The above results can provide a new material and technical reference for the adsorption removal of dyeing wastewater.
-
Key words:
- sodium alginate /
- graphene oxide /
- methylene blue /
- coexistence of dyes /
- adsorption /
- magnetic
-
表 1 Fe3O4@SA/GO吸附MB动力学模型的拟合参数
Table 1. Fitting parameters for kinetic models of MB adsorption onto Fe3O4@SA/GO
伪一级动力学 伪二级动力学 qe(exp)/
(mg·g−1)k1/
min−1qe(cal)/
(mg·g−1)R2 k2/
min−1qe(cal)/
(mg·g−1)R2 1.263×10−2 95.627 0.998 9 1.186×10−4 115.717 0.978 7 94.261 表 2 Fe3O4@SA/GO吸附MB的颗粒内扩散模型拟合参数
Table 2. Intra-particle diffusion model parameters of MB on Fe3O4@SA/GO
模型 参数 kid/(mg·min1/2·g−1) cid/(mg·g)−1 R2 边界层扩散 8.07 −13.38 0.999 3 颗粒内扩散 2.38 54.60 0.900 5 平衡阶段 0.08 93.58 0.994 7 表 3 Fe3O4@SA/GO吸附MB等温线模型的拟合参数
Table 3. Fitting parameters for isotherm models of MB adsorption onto Fe3O4@SA/GO
朗格缪尔模型 弗朗德力西模型 b/(L·mg−1) qm/(mg·g−1) R2 KF n R2 0.041 81 452.138 0.975 52.95 2.370 0.952 -
[1] KONICKI W, ALESKANDRZAK M, MIJOWSKA E. Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide[J]. Chemical Engineering Research and Design, 2017, 123: 35-49. doi: 10.1016/j.cherd.2017.03.036 [2] TKACZYK A, MITROWSKA K, POSYNIAK A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review[J]. Science of the Total Environment, 2020, 717: 137222. doi: 10.1016/j.scitotenv.2020.137222 [3] OTHMAN N H, ALIAS N H, SHAHRUDDIN M Z, et al. Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 2803-2811. doi: 10.1016/j.jece.2018.04.024 [4] WANG H, GAO H H, CHEN M X, et al. Microwave-assisted synthesis of reduced graphene oxide/titania nanocomposites as an adsorbent for methylene blue adsorption[J]. Applied Surface Science, 2016, 360: 840-848. doi: 10.1016/j.apsusc.2015.11.075 [5] YAO X X, JI L L, GUO J, et al. An abundant porous biochar material derived from wakame (undaria pinnatifida) with high adsorption performance for three organic dyes[J]. Bioresource Technology, 2020, 318: 124082. doi: 10.1016/j.biortech.2020.124082 [6] BAYAZIT S S, DANALIOĞLU S T, SALAM M A, et al. Preparation of magnetic MIL-101(Cr) for efficient removal of ciprofloxacin[J]. Environmental Science and Pollution Research, 2017, 24(32): 25452-25461. doi: 10.1007/s11356-017-0121-0 [7] 崔梦娇. 磁性金属-有机骨架复合材料的制备及其对水中有机污染物吸附性能的研究[D]. 保定: 河北大学, 2020. [8] LEI J P, QIAN R C, LING P H, et al. Design and sensing applications of metal-organic framework composites[J]. Trends in Analytical Chemistry, 2014, 58: 71-78. doi: 10.1016/j.trac.2014.02.012 [9] 叶霞, 刘长霞, 韩月, 等. 壳聚糖改性膨润土对有机染料的吸附研究[J]. 广东化工, 2021, 48(12): 26-29. doi: 10.3969/j.issn.1007-1865.2021.12.012 [10] 江湛如, 汤媛媛, 李冰玉, 等. 磁性海藻酸铁介孔碳微球的合成及对水体中砷的去除[J]. 环境科学学报, 2018, 38(6): 2382-2392. [11] 曹仕文, 张鸿, 孟驰涵, 等. 海藻酸钠/二氧化硅杂化微球结构与吸附性能[J]. 化工进展, 2018, 37(9): 3512-3519. [12] 姚温浩, 于飞, 马杰. 海藻酸盐复合凝胶吸附材料的合成及其在水处理中的应用[J]. 化学进展, 2018, 30(11): 1722-1733. [13] KHALILIFARD M, JAVADIAN S. Magnetic superhydrophobic polyurethane sponge loaded with Fe3O4@oleic acid@graphene oxide as high performance adsorbent oil from water[J]. Chemical Engineering Journal, 2021, 408: 127369. doi: 10.1016/j.cej.2020.127369 [14] YANG S T, CHEN S, CHANG Y, et al. Removal of methylene blue from aqueous solution by graphene oxide[J]. Journal of Colloid and Interface Science, 2011, 359(1): 24-29. doi: 10.1016/j.jcis.2011.02.064 [15] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814. doi: 10.1021/nn1006368 [16] 邹成龙, 梁吉艳, 姜伟. 磁性膨润土吸附Cr(Ⅵ)离子解吸再生性能[J]. 中国有色金属学报, 2018, 28(10): 2127-2135. [17] MAHMOUD M, NABIL G M, KHALIFA M A, et al. Effective removal of crystal violet and methylene blue dyes from water by surface functionalized zirconium silicate nanocomposite[J]. Journal of Environmental Chemical Engineering, 2019, 7(2): 103009. doi: 10.1016/j.jece.2019.103009 [18] MARŠÁLEK R, ŠVIDRNOCH M. The adsorption of amitriptyline and nortriptyline on activated carbon, diosmectite and titanium dioxide[J]. Environmental Challenges, 2020, 1: 100005. doi: 10.1016/j.envc.2020.100005 [19] MALLAKPOUR S, TABESH F. Tragacanth gum based hydrogel nanocomposites for the adsorption of methylene blue: comparison of linear and non-linear forms of different adsorption isotherm and kinetics models[J]. International Journal of Biological Macromolecules, 2019, 133: 754-766. doi: 10.1016/j.ijbiomac.2019.04.129 [20] ZHAO M, XU Y, ZHANG C, et al. New trends in removing heavy metals from wastewater[J]. Applied Microbiology and Biotechnology, 2016, 100(15): 6509-6518. doi: 10.1007/s00253-016-7646-x [21] CAO H L, WU X S, SYED-HASSAN S S A, et al. Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell[J]. Bioresource Technology, 2020, 318: 124063. doi: 10.1016/j.biortech.2020.124063 [22] TANG Y J, YANG R, MA D, et al. Removal of methyl orange from aqueous solution by adsorption onto a hydrogel composite[J]. Polymers and Polymer Composites, 2018, 26: 161-168. doi: 10.1177/096739111802600204 [23] 田希双. 氧化石墨烯/聚苯胺复合吸附剂的制备及其性能研究[D]. 西安: 西安科技大学, 2020. [24] 陆烨敏. 改性氧化石墨烯去除离子染料和Cr(Ⅵ)的研究[D]. 南昌: 华东交通大学, 2020. [25] 常会, 范文娟, 曾成华, 等. 氨基功能化磁性氧化石墨烯吸附亚甲基蓝的性能探讨[J]. 冶金分析, 2019, 39(8): 52-60. [26] ALQADAMI A A, KHAN M A, OTERO M, et al. A magnetic nanocomposite produced from camel bones for an efficient adsorption of toxic metals from water[J]. Journal of Cleaner Production, 2018, 178: 293-304. doi: 10.1016/j.jclepro.2018.01.023 [27] DUAN H M, LI L L, WANG X J, et al. β-Cyclodextrin/chitosan-magnetic graphene oxide-surface molecularly imprinted polymer nanocomplex coupled with chemiluminescence biosensing of bovine serum albumin[J]. RSC Advances, 2015, 5(84): 68397-68403. doi: 10.1039/C5RA11061K [28] 于长江, 王苗, 董心雨, 等. 海藻酸钙@Fe3O4/生物碳磁性复合材料的制备及其对Co(Ⅱ)的吸附性能和机制[J]. 复合材料学报, 2018, 35(6): 1549-1557. [29] 王磊, 白成玲, 朱振亚. 氧化石墨烯/海藻酸钠复合膜对Pb(Ⅱ)的吸附性能和机制[J]. 复合材料学报, 2020, 37(3): 681-689. [30] 邹成龙. 磁性膨润土材料制备及吸附重金属离子与再生研究[D]. 沈阳: 沈阳工业大学, 2019. [31] ZHOU X, ZHOU J, LIU Y, et al. Preparation of iminodiacetic acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd(II) removal in water[J]. Fuel, 2018, 233: 469-479. doi: 10.1016/j.fuel.2018.06.075 [32] 马天行, 杨琛, 江鲜英, 等. 纳米零价铁改性氨基生物炭的制备及对Cd(Ⅱ)的吸附和解吸特性[J]. 环境工程学报, 2016, 10(10): 5433-5439. doi: 10.12030/j.cjee.201603178 [33] CHIU Y H, CHANG T F M, CHEN C Y, et al. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts[J]. Catalysts, 2019, 9: 430. doi: 10.3390/catal9050430 [34] SHAMY E, GAMAL A. An efficient removal of methylene blue dye by adsorption onto carbon dot@zinc peroxide embedded poly vinyl alcohol (PVA/CZnO2) nano-composite: A novel reusable adsorbent[J]. Polymer, 2020, 202: 122565. doi: 10.1016/j.polymer.2020.122565 [35] 王智存, 牛敬业, 王义西, 等. pH响应性纤维素基气凝胶的制备及吸附再生性能[J]. 石河子大学学报(自然科学版), 2017, 35(3): 287-292. [36] 和芹, 陈伟, 舒世立, 等. 海藻酸钠磁球制备及对亚甲基蓝的吸附研究[J]. 复旦学报(自然科学版), 2021, 60(4): 532-539. [37] 杨新周, 杨子仙, 段聪丽, 等. 咖啡壳吸附亚甲基蓝和碱性品红的性能研究[J]. 热带作物学报, 2017, 38(5): 957-961. doi: 10.3969/j.issn.1000-2561.2017.05.028 [38] 温培娴, 丁伟. 品红褪色机理的实验探究[J]. 化学教育(中英文), 2020, 41(7): 96-100.