-
随着全球能源危机和环境污染威胁的日益加剧,寻找一种高效且无公害的环境治理技术是目前环境领域研究的热点[1-2]。自从1972年Fujishima首次发现在TiO2电极上水的光电化学反应将水分解为氢气和氧气以来,半导体光催化技术就以其绿色、可持续发展的优点引起了人们的广泛关注[3]。
在半导体光催化剂中,SrTiO3因为具有高化学稳定性和丰富的组成元素,被认为是一种很有前景的光催化剂[4]。此外,SrTiO3的导带和价带边缘具有较高的光化学稳定性和良好的生物相容性[5]。但由于SrTiO3具有较宽的禁带宽度(约为3.2 eV),导致其光吸收范围仅限于紫外光波段,严重降低了SrTiO3对太阳光的利用效率。此外,光生电子-空穴对复合速率快,量子效率低也是限制SrTiO3光催化性能的重要因素[6]。为了提高SrTiO3的光催化性能,科学研究人员开发了各种改性方法[7-9]。Qazi等[10]发现掺杂Cu后的SrTiO3,Cu+取代了Sr+,SrTiO3的带隙宽度从3.2 eV降低到2.96 eV,掺杂后的SrTiO3光催化活性大大提高。Atkinson等[11]通过溶胶-凝胶法合成了氮(N)掺杂的SrTiO3粉末,研究表明,由于结构、组织和形貌的协同作用,N掺杂使SrTiO3的带隙减小了1 eV左右。此外,利用S、Cr、Er和C3N4等多种材料,也提高了SrTiO3的光催化活性和化学稳定性[12-15]。目前还没有关于钨(W)和银(Ag)共掺杂SrTiO3的报道。
本文采用溶胶-凝胶法制备了W-Ag共掺杂SrTiO3纳米复合材料,以亚甲基蓝为目标污染物探究其光催化活性。并采用多种表征手段,探究W-Ag共掺杂SrTiO3样品光催化效率提升的机制。
W-Ag共掺杂SrTiO3的制备及其光催化性能
Preparation and photocatalytic properties of W-Ag co-doped SrTiO3
-
摘要: 本研究采用溶胶-凝胶法制备W-Ag共掺杂SrTiO3,以亚甲基蓝(MB)为目标污染物,研究W-Ag共掺杂SrTiO3的光催化活性及其效率提升的机制。通过X射线衍射(XRD)、扫描电镜(SEM)、光致发光光谱分析(PL)、紫外-可见漫反射光谱(UV- vis DRS)、比表面积测试(BET)和X射线光电子能谱(XPS)对样品结构、组成和光学性能进行表征。结果表明,W和Ag成功掺入SrTiO3晶体结构中,并引起SrTiO3产生晶格畸变,粒径尺寸减小。相比纯SrTiO3比表面积15.200 m2·g−1,W-Ag共掺杂SrTiO3比表面积增大到16.523 m2·g−1,有利于活性位点的暴露。W和Ag的掺杂增加了SrTiO3晶格内氧空位和表面吸附氧含量,有效抑制电子-空穴对的复合。此外,在SrTiO3价带上方产生了缺陷能级,提高SrTiO3的可见光响应。因此,与纯SrTiO3相比,W-Ag共掺杂SrTiO3显示出了更强的光催化活性。在模拟太阳光条件下,相比纯SrTiO3在6 h内54.8%的降解效率,W-Ag共掺杂SrTiO3的降解效率可达到90.5%,而降解速率常数由0.0861 h−1增加到0.3895 h−1,几乎是纯SrTiO3的5倍。Abstract: In this paper, the novel W-Ag co-doped SrTiO3 samples were prepared by sol-gel method, the photocatalytic activity has been investigated for methylene blue degradation. Structure, composition and morphology of the as-prepared catalysts were characterized using several techniques including X-ray diffraction (XRD)、Scanning electron microscope (SEM)、Photoluminescence spectroscopy (PL)、Uv-visible diffuse reflectance (UV-vis DRS)、Specific surface area (BET) and X-ray photoelectron spectroscopy (XPS). The results show that the successful doping of W and Ag into SrTiO3 crystal lattice was achieved, and the dopants, and the distortion of SrTiO3 crystal lattice caused by doping resulted in the decrease of crystallite size of SrTiO3. W-Ag co-doped SrTiO3 sample has a surface area of about 16.523 m2·g−1, which is larger than that of pure SrTiO3 (15.200 m2·g−1). The relatively large specific surface area of W-Ag co-doped SrTiO3 sample provides a greater number of reactive sites for the photocatalytic process. Doping of W and Ag increases the oxygen vacancy concentration and surface absorbed oxygen, which suppress recombination rate of the photogenerated electron-hole pairs. Besides, the defect energy level is generated above valence band of SrTiO3, which improves its visible light response. So, W-Ag co-doped SrTiO3 show higher photocatalytic activity compared with pure SrTiO3. The photocatalytic degradation efficiency of W-Ag co-doped SrTiO3 to MB reaches 90.5% after 6 h under the simulated sunlight illumination, much higher than that of pure SrTiO3 (54.8%), and the degradation rate constant of MB for W-Ag co-doped SrTiO3 is 0.3895 h−1, which was almost 5 times as much as pure SrTiO3.
-
Key words:
- strontium titanate /
- simulated sunlight /
- doping /
- sol-gel process
-
图 7 (a)纯SrTiO3和W-Ag共掺杂SrTiO3样品降解MB的光催化活性比较,(b)纯SrTiO3和W-Ag共掺杂SrTiO3样品的相应一级动力学图
Figure 7. (a) Comparison of photocatalytic activity of pure and W-Ag-codoped SrTiO3 samples for the degradation of MB in aqueous solution and (b) the corresponding first-order kinetics plot of pure and W-Ag-codoped SrTiO3 samples
表 1 SrTiO3、W-Ag共掺杂SrTiO3的孔性质
Table 1. Pore properties of SrTiO3 and W-Ag co-doped SrTiO3
样品
Sample比表面/(m2 ·g−1)
Specific surface area孔容/(cm3 ·g−1)
Pore volume平均孔径/nm
Average apertureSrTiO3 15.200 0.086 21.129 W-Ag共掺杂SrTiO3 16.523 0.071 19.920 表 2 掺杂对SrTiO3催化降解动力学参数的影响
Table 2. Effect of doping on kinetic parameters of catalytic degradation of SrTiO3
k/h−1 R2 纯 SrTiO3 0.0861 0.9481 W-Ag共掺杂SrTiO3 0.3895 0.9415 -
[1] NORVIU K W, YU J K, CHI Y, et al. Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and hotocatalysis [J]. Journal of Materials Research, 2018, 33(4): 467-481. doi: 10.1557/jmr.2018.16 [2] 齐中, 王熙, 李来胜, 等. 基于水热法制备的TiO2/MOS2复合光催化剂及其光催化制氢活性 [J]. 环境化学, 2016, 35(5): 1027-1034. doi: 10.7524/j.issn.0254-6108.2016.05.2015112403 QI Z, WANG X, LI L S. Development of TiO2 /MoS2 by hydrothermal method for photocatalytic hydrogen generation under solar light [J]. Environmental Chemistry, 2016, 35(5): 1027-1034(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.05.2015112403
[3] 赵真艺, 沈鑫怡, 陈定宁, 等. NH2-nFe3O4@ZnO@Ce磁性复合材料的制备及其对三氯酚污染物的光催化降解 [J]. 环境化学, 2020, 39(3): 643-652. doi: 10.7524/j.issn.0254-6108.2019080501 ZHAO Z Y, SHEN X Y, CHEN D N, et al. Preparation of NH2-nFe3O4@ZnO@Ce magnetic composite and its photocatalytic degradation of trichlorophenol [J]. Environmental Chemistry, 2020, 39(3): 643-652(in Chinese). doi: 10.7524/j.issn.0254-6108.2019080501
[4] GU L, WEI H H, PENG Z J, et al. Defects enhanced photocatalytic performances in SrTiO3 using laser-melting treatment [J]. Journal of Materials Research, 2016, 32(4): 748-756. [5] TAN H Q, ZHAO Z, ZHU W B, et al. Oxygen vacancyenhanced photocatalytic activity of pervoskite SrTiO3 [J]. Acs Appl Mater Interfaces, 2014, 21: 19184-19190. [6] FU X, LI H, LV R, et al. Synthesis of Mn2+ doped ZnS quantum dots/ZIF-8 composite and its applications as a fluorescent probe for sensing Co2+ and dichromate [J]. Journal of Solid State Chemistry, 2018, 264: 26-35. [7] JIANG J Z, JIA Y S, WANG Y B, et al. Insight into efficient photocatalytic elimination of tetracycline over SrTiO3(La, Cr) under visible-light irradiation: The relationship of doping and performance [J]. Applied Surface Science, 2019, 486: 93-101. doi: 10.1016/j.apsusc.2019.04.261 [8] JIN S W, SHU Y, QI W Z, et al. Influences of the factors on photocatalysis of fluorine-doped SrTiO3 made by mechanochemical [J]. Solid State Ionics, 2004, 172: 191-195. doi: 10.1016/j.ssi.2004.05.016 [9] SHAH Z H, GE Y, YE W, et al. Visible light activation of SrTiO3 by loading Ag/AgX (X = Cl, Br) for highly efficient plasmon-enhanced photocatalysis [J]. Materials Chemistry and Physics, 2017, 198: 36-73. [10] RAHMAN I Q, AHMAD M, MISRA S K, et al. Efficient degradation of methylene blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light [J]. Journal of Nanoence & Nanotechnology, 2012, 12: 7181-7186. [11] ATKINSON I, PARVULESCU V, PANDELE CUSU J, et al. Influence of preparation method and nitrogen (N) doping on properties and photo-catalytic activity of mesoporous SrTiO3 [J]. Journal of Photochemistry & Photobiology A Chemistry, 2018, 368: 12-41. [12] ZHANG C, JIA Y, JING Y, et al. DFT study on electronic structure and optical properties of N-doped, S-doped, and N/S co-doped SrTiO3 [J]. Physica B:Condensed Matter, 2012, 407: 4649-4654. doi: 10.1016/j.physb.2012.08.038 [13] YANG D, ZHAO X, ZOU X, et al. Removing Cr (Ⅵ) in water via visible-light photocatalytic reduction over Cr-doped SrTiO3 nanoplates [J]. Chemosphere, 2019, 215: 586-594. doi: 10.1016/j.chemosphere.2018.10.068 [14] ZhOU D D, ZHAI P P, HU G T, et al. Upconversion luminescence and enhanced photocatalytic hydrogen production for Er3+ doped SrTiO3 nanopaeticles [J]. Chemical Physics Letters, 2018, 711: 77-85. doi: 10.1016/j.cplett.2018.09.024 [15] LUO Y, DEG B, PU Y, et al. Interfacial coupling effects in g-C3N4/SrTiO3 nanocomposites with enhanced H2 evolution under visible light irradiation [J]. Applied Catalysis B:Environmental, 2019, 247: 1-25. doi: 10.1016/j.apcatb.2019.01.089 [16] SHAH Z H, GE Y, YE W, et al. Visible light activation of SrTiO3 by loading Ag/AgX (X = Cl, Br) for highly efficient plasmon-enhanced photocatalysis [J]. Materials Chemistry and Physics, 2017, 198: 73-78. doi: 10.1016/j.matchemphys.2017.05.002 [17] ANITHA B G, DEVI L G. Study of reaction dynamics of photocatalytic degradation of 4-Chlorophenol using SrTiO3, sulfur doped SrTiO3, silver metallized SrTiO3 and silver metallized sulfur doped SrTiO3 catalysts: Detailed analysis of kinetic results [J]. Surfaces and Interfaces, 2019, 16: 50-58. doi: 10.1016/j.surfin.2019.04.009 [18] KAVITHA V, MAHALINGAM P, JEYANTHINATH M, et al. Optical and structural properties of ungsten-doped barium strontium titanate [J]. Materials Today:Proceedings, 2019, 11: 1-4. doi: 10.1016/j.matpr.2018.12.097 [19] KAVIYARASAN K, VINOTHV, et al. Photocatalytic and photoelectrocatalytic performance of sonochemically synthesized Cu2O@TiO2 Heterojunction Nanocomposites [J]. Ultrasonics Sonochemistry, 2019, 51: 223-246. doi: 10.1016/j.ultsonch.2018.10.022 [20] WU G L, XIAO L S, GUO L S, et al. Fabrication and excellent visible-light-driven photodegradation activity for antibiotics of SrTiO3 nanocube coated CdS microsphere heterojunctions [J]. RSC Advances, 2016, 24: 19878-19902. [21] DUAN C L, SONG J L, WANGB Y, et al. Lactic acid assisted solvothermal synthesis of BiOClxI1–x solid solutions as excellent visible light photocatalysts [J]. Chemical Research in Chinese Universities, 2019, 236: 326-334. [22] HWANG D W, KIM H G, LEE J S, et al. Photocatalytic hydrogen production from water over M-Doped La2Ti2O7 (M = Cr, Fe) under visible light irradiation [J]. Journal of Physical Chemistry B, 2015, 109: 2093-2102. [23] GUAN X J, GUO L J, et al. Cocatalytic effect of SrTiO3 on Ag3PO4 toward enhanced photocatalytic water oxidation [J]. ACS Catalysis, 2014, 4: 3020-3027. doi: 10.1021/cs5005079 [24] LIU R R, JI Z J, WANG J, et al. Solvothermal synthesized Ag-decorated TiO2/sepiolite composite with enhanced UV–vis and visible light photocatalytic activity [J]. Microporous and Mesoporous Materials, 2018, 266: 268-275. doi: 10.1016/j.micromeso.2018.03.009 [25] DING J F, LONG G Y, LUO Y, et al. Photocatalytic reductive dechlorination of 2-chlorodibenzo-p-dioxin by Pd modified g-C3N4 photocatalysts under UV–vis irradiation: Efficacy, kinetics and mechanism [J]. Journal of Hazardous Materials, 2018, 355: 74-106. doi: 10.1016/j.jhazmat.2018.05.014 [26] WANG P, JIA C C J, LI J, et al. Ti3+-doped TiO2(B)/anatase spheres prepared using thioglycolic acid towards super photocatalysis performance [J]. Journal of Alloys and Compounds, 2018, 780: 660-690. [27] NG J W, XU S P, ZHANG X W, et al. Hybridized Nanowires and Cubes: A Novel Architecture of a Heterojunctioned TiO2/SrTiO3 Thin Film for Efficient Water Splitting [J]. Advanced Functional Materials, 2010, 20: 4287-4295. doi: 10.1002/adfm.201000931 [28] SHEN H F, WEI H Y, PAN Z D, et al. Preparation and characterization of SrTiO3-Ag/AgCl hybrid composite with promoted plasmonic visible light excited photocatalysis [J]. Applied Surface Science, 2017, 423: 403-446. doi: 10.1016/j.apsusc.2017.06.023 [29] HU C C, HUANG H X, LIN Y F, et al. Decoration of SrTiO3 nanofibers by BiOI for photocatalytic methyl orange degradation under visible light irradiation [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96: 264-273. doi: 10.1016/j.jtice.2018.11.020 [30] AKHUNDI A, AZIZ H A. Ternary g-C3N4/ZnO/AgCl nanocomposites: Synergistic collaboration on visible-light-driven activity in photodegradation of an organic pollutant [J]. Applied Surface Science, 2015, 358: 261-269. doi: 10.1016/j.apsusc.2015.08.149 [31] WAN S, OU M, ZHONG Q, et al. Z-scheme CaIn2S4/Ag3PO4 nanocomposite with superior photocatalytic NO removal performance: Fabrication, characterization and mechanistic study [J]. New Journal of Chemistry, 2018, 42(1): 318-326. doi: 10.1039/C7NJ03588H