-
氮氧化物(NOx)是造成酸雨、雾霾等的主要大气污染物,对人类的生活和生产造成危害[1]。目前,国内外普遍采用选择性催化还原(SCR)技术对NOx进行控制[2]。SCR技术具有污染物去除率高、技术成熟的优点,但同时也存在氨逃逸、N资源无法回收利用等不足。NOx主要以一氧化氮(NO)的形式存在,因此要实现低成本烟气脱硝,最简便的方法是利用烟气中剩余的O2,在催化剂的作用下将NO氧化为可溶性的NO2(催化氧化SCO技术),再用碱液吸收湿法脱除,其中氧化效率达到50%左右时可实现最大的吸收率[3]。SCO技术因其催化性能和产物稳定,成本较低且不会造成二次污染,最具工业应用前景,因而近年来吸引了众多研究者的关注。
在诸多SCO催化剂中,过渡金属氧化物因其活性高、原料来源广和价格低等优点,成为近年来NO催化氧化研究的热点。研究较多的有锰(Mn)系、钴(Co)系和铬(Cr)系金属氧化物,其均具有较高的NO催化氧化率。Meng等[4]研究了不同煅烧温度对MnOx-CeO2催化剂催化氧化NO效率的影响。结果表明,煅烧温度为650 ℃下煅烧得到的产物具有最高的活性,反应温度为300 ℃时,NO氧化效率可达78%左右,然而过高的煅烧温度会导致无定形MnOx的烧结,并使得无定形态MnOx转变为块状Mn2O3,而无定形态MnOx的高含量是高效催化氧化NO的关键因素。Shang等[5]以柠檬酸为络合剂,采用一锅法制备了Co/Zr0.2Ce0.8O2催化剂,研究不同Co负载量对催化氧化NO性能的影响。结果表明,当负载量达到10% wt.时,催化剂具有最高的活性,反应温度为300 ℃时NO氧化效率可达76%。然而,烟气中二氧化硫(SO2)的存在会占据催化剂表面的活性位,降低氧化效率。在过渡金属氧化物中,Cr系催化剂因其具有较高的抗硫性能而备受关注[6]。Cai等[7]研究了不同水热反应溶剂对Cr-Ce复合氧化物催化氧化NO性能的影响,结果表明,当乙醇作为反应溶剂时催化剂具有最高的活性,反应温度为300 ℃下的NO氧化效率可达64%。同时该催化剂具有较高的抗硫性能,当(4×10−4)%vol. SO2通入反应气氛中时,催化剂在300 ℃下仍可保持在高于50%的NO氧化活性。同时,该研究表明较高的催化剂表面粗糙度利于表面活性位点的充分暴露,是提升其NO氧化活性的关键因素。因此,通过改变制备条件来促使更多的活性位点暴露出来,便更有利于提升NO的氧化活性。有研究表明,纳米结构催化材料的合成能够进一步提升催化剂的催化性能,尤其是低温下的催化活性[8-10]。针对水热反应,众所周知,水热温度是水热反应的核心参数,是控制催化剂纳米结构形态的关键因素。到目前为止,水热温度对Cr系催化剂的纳米结构形态及其NO氧化活性影响的研究鲜有报道。
本文采用一锅水热法制备了一种纳米结构的Cr2O3/CeO2复合氧化物,并考察了不同水热温度对低温催化氧化NO效率的影响,并通过多种表征研究了水热温度、催化剂纳米结构与催化性能之间的构效关系。
水热温度对纳米Cr2O3/CeO2复合氧化物低温催化氧化NO性能的影响
Effect of different hydrothermal temperatures on catalytic performance for NO oxidation at low temperature over nano-structured Cr2O3/CeO2
-
摘要: 采用一锅水热法合成了纳米颗粒状铬铈复合氧化物(Cr2O3/CeO2),并将其应用于催化氧化烟气脱硝(SCO),考察了不同水热温度对催化剂低温催化活性的影响。结果表明,当水热温度为180 ℃时制得的催化剂(CC180)具有较高的低温SCO活性,其在200 ℃下NO氧化率高达59%。采用X-射线衍射、透射电镜、X-光电子能谱、程序升温脱附等表征手段探讨了催化剂的结构形貌与催化活性之间的构效关系。结果表明,Cr物种主要以表面分散的形式存在于催化剂表面,同时适中的水热温度利于活性位点Cr物种的表面高分散,提升活性位点数量,而催化剂表面较高的六价铬Cr6+和化学吸附氧Oβ含量则提升了低温下NO和O2的吸附容量,促进了低温下的NO氧化效率。此外,催化剂较高的稳定性及较强的抗硫抗水测试后自恢复性推进了SCO技术的工业化进程。
-
关键词:
- 脱硝 /
- 催化氧化 /
- Cr2O3/CeO2催化剂 /
- 抗硫抗水
Abstract: The Cr2O3/CeO2 composites were synthesized via a one-pot hydrothermal method, and were evaluated for denitration on catalytic oxidation of NO (SCO). The influence of different hydrothermal temperatures on catalytic performance at low temperature was investigated. The results showed that the sample with hydrothermal temperature of 180 ℃ (CC180) displayed the highest activity among all samples, which exhibited 59% oxidation efficiency at 200 ℃. Kinds of characterizations such as X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption, et al. were applied to explore the relationship between the structure and the activity over the catalysts. The results displayed that Cr species mainly existed on the surface of catalysts in the form of surface dispersion, and the proper temperature of hydrothermal process benefits for the well dispersion of Cr species. The high ratios of Cr6+ and chemisorbed oxygen (Oβ) on the surface promoted the adsorption capacity of NO and O2 at low temperature, thus enhancing the NO oxidation efficiency at low temperature. Moreover, the high stability and the strong recovery capacity after the remove of SO2 and H2O of this series catalysts promoted the industrial application progress of SCO technology.-
Key words:
- denitration /
- catalytic oxidation /
- Cr2O3/CeO2 catalyst /
- SO2 & H2O(g) resistance
-
表 1 本文制备的Cr2O3/CeO2催化剂与已报道的Mn基和Co基催化剂催化氧化NO的性能对比
Table 1. The comparison of NO oxidation efficiency among the reported Mn-based and Co-based catalysts, and the synthesized Cr2O3/CeO2 catalyst in this work
催化剂
CatalystsNO氧化率/%
NO conversion温度1/℃
Temperature参考文献
ReferenceCr/CeO2 83 300 本文 MnCe 82 220 [13] CoCe 80 300 [14] LaMnO3 78 314 [15] 注:1.该温度为测试温度区间内的最高NO氧化率所对应的反应温度。
Note: 1. The temperature here refers to the reaction temperature corresponding to the highest NO oxidation efficiency in the range of testing temperature.表 2 催化剂CC140、CC180和CC200表面的Cr6+、Ce3+和Oβ含量
Table 2. The Cr6+, Ce3+and Oβ ratios on the surface of CC140, CC180 and CC200 catalysts
催化剂
CatalystsCr6+含量
Cr6+ ratiosCe3+含量
Ce3+ ratiosOβ含量
Oβ ratiosCC140 48.97% 7.40% 38.40% CC180 57.14% 13.72% 54.24% CC200 47.01% 5.83% 29.70% 表 3 催化剂CC140、CC180和CC200的BET比表面积、孔容积和孔径
Table 3. The BET surface area, pore volume and pore size of CC140, CC180 and CC200 catalysts
催化剂
CatalystsBET比表面积/(m2·g−1)
BET surface area孔容积/(cm3·g−1)
Pore volume孔径/nm
Pore sizeCC140 51.9 0.076 3.716 CC180 54.5 0.074 3.714 CC200 69.5 0.109 3.719 -
[1] 周佳丽, 王宝冬, 马静, 等. 锰基低温SCR脱硝催化剂抗硫抗水性能研究进展 [J]. 环境化学, 2018, 37(4): 782-791. doi: 10.7524/j.issn.0254-6108.2017091904 ZHOU J L, WANG B D, MA J, et al. SO2 and H2O poisoning resistance of manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx [J]. Environmental Chemistry, 2018, 37(4): 782-791(in Chinese). doi: 10.7524/j.issn.0254-6108.2017091904
[2] 张先龙, 马康, 蔡程, 等. MnOx/PG低温SCR催化剂二氧化硫中毒及再生特性 [J]. 环境化学, 2019, 38(6): 1403-1412. doi: 10.7524/j.issn.0254-6108.2018090503 ZHANG X L, MA K, CAI C, et al. Sulfur dioxide poisoning and regeneration characteristics of MnOx/PG low temperature SCR catalysts [J]. Environmental Chemistry, 2019, 38(6): 1403-1412(in Chinese). doi: 10.7524/j.issn.0254-6108.2018090503
[3] LI K, TANG X, YI H, et al. Low-temperature catalytic oxidation of NO over Mn-Co-Ce-Ox catalyst [J]. Chemical Engineering Journal, 2012, 192: 99-104. doi: 10.1016/j.cej.2012.03.087 [4] MENG L, WANG J, SUN Z, et al. Active manganese oxide on MnOx-CeO2 catalysts for low-temperature NO oxidation: Characterization and kinetics study [J]. Journal of Rare Earths, 2018, 36(2): 142-147. doi: 10.1016/j.jre.2017.05.017 [5] SHANG D, ZHONG Q. High performance of NO oxidation over Co/Zr0.2Ce0.8O2 catalysts prepared by one-pot method[C]. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2018, 186(2): 012003. [6] ZHONG L, YU Y, CAI W, et al. Structure-activity relationship of Cr/Ti-PILC catalysts using a pre-modification method for NO oxidation and their surface species study [J]. Physical Chemistry Chemical Physics, 2015, 17(22): 15036-15045. doi: 10.1039/C5CP00896D [7] CAI W, ZHAO Y, CHEN M, et al. The formation of 3D spherical Cr-Ce mixed oxides with roughness surface and their enhanced low-temperature NO oxidation [J]. Chemical Engineering Journal, 2018, 333: 414-422. doi: 10.1016/j.cej.2017.10.002 [8] MA M, HUANG H, CHEN C, et al. Highly active SBA-15-confined Pd catalyst with short rod-like micro-mesoporous hybrid nanostructure for n-butylamine low-temperature destruction [J]. Molecular Catalysis, 2018, 455: 192-203. doi: 10.1016/j.mcat.2018.06.016 [9] ANDREOLI S, DEORSOLA F A, GALLETTI C, et al. Nanostructured MnOx catalysts for low-temperature NOx SCR [J]. Chemical Engineering Journal, 2015, 278: 174-182. doi: 10.1016/j.cej.2014.11.023 [10] VENKATASWAMY P, RAO K N, JAMPAIAH D, et al. Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures [J]. Applied Catalysis B:Environmental, 2015, 162: 122-132. doi: 10.1016/j.apcatb.2014.06.038 [11] ATRIBAK I, GUILLEN-HURTADO N, BUENO-LOPEZ A, et al. Influence of the physic-chemical properties of CeO2-ZrO2 mixed oxides on the catalytic oxidation of NO to NO2 [J]. Applied Surface Science, 2010, 256: 7706-7712. doi: 10.1016/j.apsusc.2010.06.042 [12] LEKPHET W, KE T C, SU C, et al. Morphology control studies of TiO2 microstructures via surfactant-assisted hydrothermal process for dye-sensitized solar cell applications [J]. Applied Surface Science, 2016, 382: 15-26. doi: 10.1016/j.apsusc.2016.04.115 [13] SHEN Q, ZHANG L, SUN N, et al. Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation [J]. Chemical Engineering Journal, 2017, 322: 46-55. doi: 10.1016/j.cej.2017.02.148 [14] MEGARAJAN S K, RAYALU S, TERAOKA Y, et al. High NO oxidation catalytic activity on non-noble metal based cobalt-ceria catalyst for diesel soot oxidation [J]. Journal of Molecular Catalysis A:Chemical, 2014, 385: 112-118. doi: 10.1016/j.molcata.2014.01.026 [15] WU L, JIANG Q, WANG L, et al. Formation mechanism of yolk-shell LaMnO3 microspheres prepared by P123-template and oxidation of NO [J]. Frontiers of Materials Science, 2019, 13(1): 77-86. doi: 10.1007/s11706-019-0451-6 [16] WANG N, CHU W, ZHANG T, et al. Manganese promoting effects on the Co-Ce-Zr-Ox nano catalysts for methane dry reforming with carbon dioxide to hydrogen and carbon monoxide [J]. Chemical Engineering Journal, 2011, 170(2): 457-463. [17] AVGOUROPOULOS G, IOANNIDES T. Effect of synthesis parameters on catalytic properties of CuO-CeO2 [J]. Applied Catalysis B:Environmental, 2006, 67(1): 1-11. [18] REDDY B M, RAO K N, BHARALI P. Copper promoted cobalt and nickel catalysts supported on ceria-alumina mixed oxide: Structural characterization and CO oxidation activity [J]. Industrial & Engineering Chemistry Research, 2009, 48(18): 8478-8486. [19] TAN R, ZHU Y. Poisoning mechanism of perovskite LaCoO3 catalyst by organophosphorous gas [J]. Applied Catalysis B:Environmental, 2005, 58(1): 61-68. [20] ZHAO Z, YANG X, WU Y. Comparative study of nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO [J]. Applied Catalysis B:Environmental, 1996, 8(3): 281-297. doi: 10.1016/0926-3373(95)00067-4 [21] WU Y, YU T, DOU B S, et al. A comparative study on perovskite-type mixed oxide catalysts A′xA1-xBO3-λ (A′= Ca, Sr, A= La, B= Mn, Fe, Co) for NH3 oxidation [J]. Journal of Catalysis, 1989, 120(1): 88-107. doi: 10.1016/0021-9517(89)90253-4 [22] SI R, ZHANG Y W, LI S J, et al. Urea-based hydrothermally derived homogeneous nanostructured Ce1-xZrxO2 (x=0-0.8) solid solutions: A strong correlation between oxygen storage capacity and lattice strain [J]. The Journal of Physical Chemistry B, 2004, 108(33): 12481-12488. doi: 10.1021/jp048084b [23] REDDY B M, BHARALI P, SAIKIA P, et al. Structural characterization and catalytic activity of nanosized CexM1-xO2 (M= Zr and Hf) mixed oxides [J]. The Journal of Physical Chemistry C, 2008, 112(31): 11729-11737. doi: 10.1021/jp802674m [24] POOLE JR C P, ITZEL JR J F. Optical reflection spectra of chromia-alumina [J]. The Journal of Chemical Physics, 1963, 39(12): 3445-3455. doi: 10.1063/1.1734213 [25] LIU L J, LIU B, DONG L H, et al. In situ FT-infrared investigation of CO or/and NO interaction with CuO/Ce0.67Zr0.33O2 catalysts [J]. Applied Catalysis B:Environmental, 2009, 90: 578-586. doi: 10.1016/j.apcatb.2009.04.019