-
室内污染源/危险源的定位在提升室内空气品质、防控流行病疫情、处置危险气体泄漏和应对生化恐怖袭击等方面均能发挥重要作用[1-4]。迄今为止,研究者们针对室内通风环境中的源定位问题已经开展了大量研究[5]。然而,针对未通风或通风不良的室内弱气流环境中的源定位问题,除了多年前的个别探索,鲜有研究报道[6]。在实际应用中,室内弱气流环境对应的场景十分普遍,如在过渡季节室内未通风的场景,通风空调系统发生故障的场景,在事故和灾害中通风空调系统受损的场景以及受建筑结构或家具影响形成室内风影区的场景等。在上述场景中,由于通风量不足且缺乏主导气流的输运作用,污染物或危险物质更容易积聚并达到有害或危险浓度。现有研究的不足与实际应用需求之间的矛盾凸显了在室内弱气流环境下开展源定位研究的必要性。
目前,对室内污染源/危险源进行定位的方法主要分为固定传感器网络(SSN)方法和移动机器人嗅觉(MRO)方法。SSN方法通常利用传感器读数,通过正向或反向求解室内流场和污染物扩散的基本模型(如计算流体动力学(CFD)模型和多区模型)来定位室内污染源/危险源[7-9]。由于只有当污染物/危险物扩散到监测位置,传感器才能获得其浓度读数,SSN方法也被视作为被动式方法。迄今为止,尽管SSN方法在室内通风环境的源定位研究中已经有大量报道,但尚未见有此类方法应用在室内弱气流环境中进行源定位的研究报道。近年来,尽管SSN方法的研究已经取得了很大的进展,但该类方法仍存在需要提前布置传感器,边界条件难以确定,模型求解难度大等局限。另外,室内弱气流环境由于其特殊性,也对SSN方法的研究提出了一些新挑战。例如,由于缺少主导气流且受湍流主控,污染物扩散过程的建模和求解会更加困难。此外,污染物可能需要更长的时间才能扩散到传感器所在位置,因此,也难以对突发污染作出快速响应。
与SSN方法相比,因为移动机器人具有在空间中主动搜索的能力,MRO方法也被视作为主动式方法。此类方法通常是受动物的觅食、求偶和避敌等行为启发而发展而来,因而在方法中通常会体现出仿生学原理[10-12]。与SSN方法相比,MRO方法主要有以下3点优势:机器人通过主动搜索可以更快地探测到目标污染物;MRO方法通常不需要对复杂的室内污染物扩散过程进行建模和求解;机器人可以执行多重任务,如源头控制、疏散引导、医疗救助等。综上所述,针对室内弱气流环境中的源定位问题,本文开展基于MRO方法的研究。
现有的基于MRO方法的源定位研究主要针对有主导气流的室内通风环境[5,13-24]。相比之下,只有少数研究考虑了未通风或通风不良的室内弱气流环境[6,25-30]。与室内通风环境相比,室内弱气流环境对MRO方法的挑战主要有2点:没有主导气流信息可以指导机器人连续跟踪污染物烟羽;污染物的扩散受湍流的影响更大,其浓度的波动往往会更加剧烈和频繁,从而无法形成持续指向源的浓度梯度,并由此增加机器人溯源的难度。
针对室内弱气流环境的MRO方法溯源研究,根据使用机器人的数量可分为单机器人嗅觉方法和多机器人嗅觉方法。在早期研究中,单机器人嗅觉方法因其成本低、易于实现而受到青睐。LILIENTHAL团队[22]提出了Braitenberg-type方法,FERRI团队受飞蛾等生物启发提出了Spiral方法[25]。2个团队皆通过实验验证了其所提方法在室内弱气流环境中的有效性。从这2个团队的单机器人溯源实验来看,均采用二维溯源方式,即假设源高度已知,且机器人所携带的传感器也固定在源高度上。然而,在实际应用中还普遍存在源高度未知的场景,此时二维溯源能否适用则有待于验证。
为了进一步提升源定位的成功率和效率,研究者们尝试着用多机器人嗅觉方法来解决室内弱气流环境中的源定位问题。FERRI[30]提出了1种基于家蚕行为的多机器人嗅觉方法,通过模拟室内弱气流环境对该方法进行了测试,结果表明,该方法在成功率和效率方面明显优于单机器人嗅觉方法。在这项研究之后,FERRI[27]进一步提出了1种基于粒子群优化算法的多机器人嗅觉方法(EPSO),该方法进一步加强了机器人之间的协作。尽管上述研究取得了一定进展,但是这些研究均是基于模拟的污染物浓度场开展的仿真研究,因此,不可避免地存在以下局限:在真实的室内弱气流环境中,受湍流影响,污染物的浓度会呈现出剧烈和频繁的波动,这是难以通过时均化的数值模型模拟得出的;在仿真研究中也没有充分考虑传感器的实际特性,如响应/恢复时间和检测误差;在仿真研究中也很难体现机器人之间的碰撞以及机器人运动对流场的干扰。
本研究的目标是在真实的室内弱气流环境下,利用基于标准粒子群算法(SPSO)的多机器人嗅觉方法(SPSO方法)来实现对源高度未知的气体污染物的溯源。虽然OSÓRIO[32]等建立了一种能够检测不同高度气味浓度和风向的机器人,但其机器人上仅是在垂直方向3个高度上携带了传感器,其传感器是固定不可受控移动的[32],而本研究中我们开发了多机器人三维溯源系统,该系统由3台传感器可以在高度方向上受控移动的三维溯源机器人组成,并且能够执行SPSO方法。在本研究中,设置了1.05 m和0.75 m 2种源高度,并在每种源高度下均开展了15组三维和二维溯源(传感器高度为1.05 m)实验,以验证三维溯源的有效性,并对比三维溯源和二维溯源的性能。
针对室内弱气流环境中气体污染源的多机器人三维溯源
Experimental research on multi robot three-dimensional source localization of gas pollution sources in indoor weak airflow environment
-
摘要: 室内弱气流环境通常指没有通风或通风不良的室内环境。现有针对室内弱气流环境的机器人源定位的实验研究均为单机器人二维溯源。单机器人二维溯源不仅成功率和效率较低,而且可能无法应对现实应用中源高度未知的场景。针对上述局限,开发了由3台机器人组成的多机器人三维溯源系统,每台机器人的传感器均可在0.5~1.5 m高度内受控移动,并基于粒子群算法提出了1种三维溯源方法(SPSO方法)。在某实训中心共开展了60组源定位实验,机器人的活动范围是7.65 m×4.1 m,二维溯源时传感器的高度为1.05 m。当源高度为1.05 m和0.75 m时,三维溯源的成功率分别为60%(9组/15组)和53.3%(8组/15组),平均定位步数分别为30步和32.8步;二维溯源的成功率分别为80%(12组/15组)和26.7%(4组/15组),平均定位步数分别为16步和42步。结果表明:在室内弱气流环境下,SPSO方法对不同源高度下的三维溯源具有良好的适应性,能够应用于源高度未知的场景,但其成功率有待提高;SPSO方法用于二维溯源能适用于源高度已知的场景,但并不适用于源高度未知的场景。Abstract: Indoor weak airflow environment usually refers to the indoor environment without ventilation or poor ventilation. The existing experimental research on robot source localization in indoor weak airflow environment is two-dimensional source localization by a single robot. The success rate and efficiency of single robot two-dimensional source localization are low, and it may not be able to cope with the scene of unknown source height in real application. In view of the above limitations, a multi robot three-dimensional source localization system composed of three robots was developed. The sensors of each robot could move under control in the height range of 0.5 m~1.5 m. At the same time, a three-dimensional source localization method based on particle swarm optimization (SPSO method) was proposed. 60 groups of source positioning experiments were carried out in a training center and the range of robot activity was 7.65 m × 4.1m, the height of sensor was 1.05 m when two-dimensional source localization experiments were carried out. At the source heights of 1.05 m and 0.75 m, the success rates of three-dimensional source localization were 60% (9/15) and 53.3% (8/15), and the average localization steps were 30 and 32.8 steps, respectively. The success rates of two-dimensional source localization were 80% (12/15) and 26.7% (4/15), and the average number of localization steps was 16 and 42, respectively. The results show that: in the indoor weak airflow environment, SPSO method had good adaptability to the three-dimensional source localization at different source heights, and could be applied to the scene with unknown source height, but its success rate needed to be improved. For two-dimensional source localization, SPSO method could be applied to the scene with known source height, but not to the scene with unknown source height.
-
表 1 源在不同高度释放时二维溯源和三维溯源实验结果统计
Table 1. Statistics of two-dimensional and three-dimensional source localization experiment results when the source was released at different heights
溯源类型 源高度/m 成功组数/总组数 成功率/% 平均定位步数/步 平均定位时长/s 三维溯源 1.05 9/15 60.0 30.0 762 0.75 8/15 53.3 32.8 815 二维溯源 1.05 12/15 80.0 16.0 318 0.75 4/15 26.7 42.0 734 表 2 源在不同高度释放时二维溯源和三维溯源失败实验结果统计
Table 2. Statistics of two-dimensional and three-dimensional source localization failure experiment results when the source was released at different heights
溯源类型 源高度/m 总失败组数/组 定位偏差超0.5 m组数/组 定位步数超50步组数/组 三维溯源 1.05 6 4 2 0.75 7 4 3 二维溯源 1.05 3 2 1 0.75 11 3 8 -
[1] LANDRIGAN P J. Air pollution and health[J]. The Lancet Public Health, 2017, 2(1): 4-5. doi: 10.1016/S2468-2667(16)30023-8 [2] FERRETTI L, WYMANT C, KENDALL M, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing[J]. Science, 2020, 368(6491): 619-620. [3] ALEXANDER D A, KLEIN S. Biochemical terrorism: too awful to contemplate, too serious to ignore: Subjective literature review[J]. The British Journal of Psychiatry, 2003, 183(6): 491-497. [4] CAI H, LONG W D, LI X T, et al. Evaluating emergency ventilation strategies under different contaminant source locations and evacuation modes by efficiency factor of contaminant source (EFCS)[J]. Building and Environment, 2010, 45(2): 485-497. doi: 10.1016/j.buildenv.2009.07.005 [5] FENG Q L, ZHANG C X, LU J Y, et al. Source localization in dynamic indoor environments with natural ventilation: An experimental study of a particle swarm optimization-based multi-robot olfaction method[J]. Building and Environment, 2019, 161: 106228. doi: 10.1016/j.buildenv.2019.106228 [6] YANG Y B, FENG Q L, CAI H, et al. Experimental study on three single-robot active olfaction algorithms for locating contaminant sources in indoor environments with no strong airflow[J]. Building and Environment, 2019, 155: 320-333. doi: 10.1016/j.buildenv.2019.03.043 [7] LIU D, ZHAO F Y, WANG H Q, et al. History source identification of airborne pollutant dispersions in a slot ventilated building enclosure[J]. International Journal of Thermal Sciences, 2013, 64: 81-92. doi: 10.1016/j.ijthermalsci.2012.08.005 [8] FONTANINI A D, VAIDYA U, GANAPATHYSUBANMANIAN B. A methodology for optimal placement of sensors in enclosed environments: A dynamical systems approach[J]. Building and Environment, 2016, 100: 145-161. doi: 10.1016/j.buildenv.2016.02.003 [9] ZHANG T T, LI H, WANG S. Inversely tracking indoor airborne particles to locate their release sources[J]. Atmospheric Environment, 2012, 55: 328-338. doi: 10.1016/j.atmosenv.2012.03.066 [10] CHEN X X, HUANG J. Odor source localization algorithms on mobile robots: A review and future outlook[J]. Robotics and Autonomous Systems, 2019, 112: 123-136. doi: 10.1016/j.robot.2018.11.014 [11] FRICKE G M, ASPERTI-BOURSIN F, HEXKER J, et al. From microbiology to microcontrollers: robot search patterns inspired by T cell movement[C]//Artificial Life Conference Proceedings 13. One Rogers Street, Cambridge, MA 02142-1209 USA journals-info@ mit. edu: MIT Press, 2013: 1009-1016.. [12] NURAZAMAN S G, MATSUMOTO Y, NAKAMURA Y, et al. 'Yuragi'-based adaptive mobile robot search with and without gradient sensing: from bacterial chemotaxis to a levy walk[J]. Advanced Robotics, 2011, 25(16): 2019-2037. doi: 10.1163/016918611X590229 [13] ISHIDA H, HAYASHI K, TAcAKUSAKI M, et al. Odour-source localization system mimicking behaviour of silkworm moth[J]. Sensors and Actuators A: Physical, 1995, 51(2/3): 225-230. [14] HAYES A T, MARTINOLI A, GOODMAN R M. Distributed odor source localization[J]. Ieee Sensors J, 2002, 2(3): 260-271. doi: 10.1109/JSEN.2002.800682 [15] JATMIKO W, SEKIYAMA K, FUKUDA T. A pso-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment: Theory, simulation and measurement[J]. Computational Intelligence Magazine, 2007, 2(2): 37-51. doi: 10.1109/MCI.2007.353419 [16] LOCHMATTER T, RAEMY X, MATTHEY L, et al. A comparison of casting and spiraling algorithms for odor source localization in laminar flow[C]//International Conference on Robotics and Automation, 2008: 1138-1143. [17] FERRI G, CASELLI E, MATTOLI V, et al. SPIRAL: A novel biologically-inspired algorithm for gas/odor source localization in an indoor environment with no strong airflow[J]. Robotics and Autonomous Systems, 2009, 57(4): 393-402. doi: 10.1016/j.robot.2008.07.004 [18] MENG Q H, YANG W X, WANG Y, et al. Adapting an ant colony metaphor for multi-robot chemical plume tracing[J]. Sensors, 2012, 12(4): 4737-4763. doi: 10.3390/s120404737 [19] MENG Q H, YANG W X, WANG Y, et al. Collective odor source estimation and search in time-variant airflow environments using mobile robots[J]. Sensors, 2011, 11(11): 10415-10443. doi: 10.3390/s111110415 [20] LIU X, LI F, CAI H, et al. Dynamical source term estimation in a multi-compartment building under time-varying airflow[J]. Building and Environment, 2019, 160: 106162. doi: 10.1016/j.buildenv.2019.106162 [21] MA T, LIU S, XIAO H. Location of natural gas leakage sources on offshore platform by a multi-robot system using particle swarm optimization algorithm[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103636. doi: 10.1016/j.jngse.2020.103636 [22] FENG Q, CAI H, LI F, et al. An improved particle swarm optimization method for locating time-varying indoor particle sources[J]. Building and environment, 2019, 147: 146-157. doi: 10.1016/j.buildenv.2018.10.008 [23] FENG Q, CAI H, YANG Y, et al. An experimental and numerical study on a multi-robot source localization method independent of airflow information in dynamic indoor environments[J]. Sustainable Cities and Society, 2020, 53: 101897. doi: 10.1016/j.scs.2019.101897 [24] YANG Y, ZHANG B, FENG Q, et al. Towards locating time-varying indoor particle sources: development of two multi-robot olfaction methods based on whale optimization algorithm[J]. Building and Environment, 2019, 166: 106413. doi: 10.1016/j.buildenv.2019.106413 [25] FERRI G, CASELLI E, MATTOLI V, et al. SPIRAL: A novel biologically-inspired algorithm for gas/odor source localization in an indoor environment with no strong airflow[J]. Robotics and Autonomous Systems, 2009, 57(4): 393-402. doi: 10.1016/j.robot.2008.07.004 [26] LILIENTHAL A, REIMANN D, ZELL A. Gas source tracing with a mobile robot using an adapted moth strategy[M]. Autonome Mobile Systeme 2003: 150-160. [27] FERRI G, CASELLI E, MATTOLI V, et al. Explorative particle swarm optimization method for gas/odor source localization in an indoor environment with no strong airflow[C]//International Conference on Robotics and Biomimetics (ROBIO), 2007: 841-846. [28] LILIENTHAL A, DUCKETT T. Experimental analysis of gas-sensitive Braitenberg vehicles[J]. Advanced Robotics, 2004, 18(8): 817-834. doi: 10.1163/1568553041738103 [29] LILIENTHAL A, ZELL A, WANDEL M, et al. Sensing odour sources in indoor environments without a constant airflow by a mobile robot[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, 2001, 4: 4005-4010. [30] FERRI G, CASELLI E, MATTOLI V, et al. A biologically-inspired algorithm implemented on a new highly flexible multi-agent platform for gas source localization[C]//The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006: 573-578. [31] FENG Q L, CAI H, LI F, et al. Locating time-varying contaminant sources in 3D indoor environments with three typical ventilation systems using a multi-robot active olfaction method[C]//Building Simulation. Springer Berlin Heidelberg, 2018, 11(3): 597-611. [32] OSÓRIO L, CABRITA G, MARQUES L. Mobile Robot Odor Plume Tracking using Three Dimensional Information[C]//ECMR. 2011: 165-170. [33] 李吉功. 室外时变气流环境下机器人气味源定位[D]. 天津: 天津大学, 2010. [34] 赵泽宇, 蒲明博, 王彦钦, 等. 广义折反射定律[J]. 光电工程, 2017, 44(2): 129-139. [35] FENG Q L, CAI H, CHEN Z, et al. Experimental study on a comprehensive particle swarm optimization method for locating contaminant sources in dynamic indoor environments with mechanical ventilation[J]. Energy and Buildings, 2019, 196: 145-156. doi: 10.1016/j.enbuild.2019.03.032