-
抗生素不仅可以治疗人类疾病,还可以作为生长促进剂促进动物生长,因此被广泛应用于人类医疗和动物蓄养方面[1-2]。抗生素进入动物和人体后,不能被充分吸收。未被吸收的抗生素通过尿液和粪便排出体外,可能直接排入周边环境,并造成环境污染[3],也可能随生活污水一起进入传统污水处理厂(WWTPs)中。由于WWTPs缺少针对抗生素类污染物的去除单元,故抗生素类污染物不能被完全去除,残留的抗生素随WWTPs尾水排放进入水体及周边环境中[4-5]。尽管抗生素类污染物质在水环境中检测出的残留质量浓度极低(ng·L−1或µg·L−1级别),但环境中持续低浓度的抗生素残留不仅可以选择性抑杀一些环境微生物,而且能够诱导一些耐药菌群或抗性基因(antibiotic resistance genes, ARGs)的产生,且ARGs可以通过水平基因转移在微生物之间转移,一旦转移到人类致病菌中,将会导致抗生素疗效降低甚至治疗失效,严重威胁人类健康[6]。城市在抗生素使用量和集中性上占据主要地位,因此,WWTPs尾水直接排放入河流或作为农田灌溉用水已成为环境抗生素及抗性基因污染的一个主要来源[7-10]。
将WWTPs尾水回用于农业灌溉是缓解城市水资源短缺的一项重要措施[11-13]。尾水中残留的抗生素在再生水灌溉时会转移至土壤中,并诱导抗生素抗性细菌的产生,而ARGs通过基因的垂直转移和水平转移使ARGs在土壤中传播和扩散,从而对生态环境和人类健康造成威胁[14-15]。然而,目前污水灌溉对土壤造成的不利影响研究多集中于重金属、好氧有机物、pH、TSS及微生物等污染方面,WWTPs尾水中频繁检出的抗生素类新兴有机污染物却被忽略,关于污水厂尾水用于稻田灌溉时尾水中抗生素在稻田作物及土壤中的残留还未见有相关的报道。
目前,对于环境中抗生素残留量的检测方法有生物检测法、理化检测法和联用技术[16],相对来说,生物检测法、灵敏性低、准确性差、不够稳定,所以运用较少。理化检测法中应用较多的为超高效液相色谱法(UPLC)和气相色谱法(GC),而联用技术相对来说灵敏度高、重复性好、检出限低,是目前应用最多的检测方法。其中,液相色谱串联质谱(LC-MS/MS)法能够定性、定量的检测环境中的抗生素,并具有较低的检出限(ng·L−1)和较高的回收率,故得到广泛应用[17]。QuEChERS法具有快速、简单、便宜、有效、耐用和安全等优点,是一种可以提取食品中农药和药物残留等化学污染物的新型前处理技术[18-19]。本研究选取被广泛使用及在WWTPs尾水中检出频率较高的抗生素(磺胺甲恶唑、氧氟沙星、罗红霉素、四环素)为研究对象,采用QuEChERS的前处理净化手段,结合HPLC-MS/MS法相结合的方法,建立了稻田模拟系统中土壤及水稻中残留抗生素的测定方法。该方法操作简单、灵敏度高、重现性好,可满足稻田系统中土壤及作物中抗生素残留的检测分析,从而为保障再生水灌溉安全风险监测提供有效手段。
QuEChERS-液相色谱-串联质谱法测定稻田中土壤及水稻中抗生素的残留量
Determination of antibiotic residues in soil and rice of the simulated paddy field by QUECHERS-LC-MS/MS
-
摘要: 采用QuEChERS-LC-MS/MS法建立了稻田模拟系统中残留的4种目标抗生素的检测方法。样品经5%甲酸-乙腈提取,用内标法进行定量。结果表明,4种目标抗生素在0.10~100 µg·L−1内具有良好的线性关系(R2>0.998)。OFX、SMZ、ROX和TET的检出限分别为0.10、0.10、0.05、0.20 µg·L−1。4种目标物质在稻田水、稻米、水稻植株(地上部分和地下部分)和稻田土壤中的回收率分别为82.8%~166.1%、78.1%~103.5%、94.5%~97.8%、67.7%~100.2%、86.7%~93.9%,相对标准偏差分别为0.3%~8.3%、1.4%~3.8%、1.1%~6.8%和1.1%~2.4%。通过建立稻田模拟系统,长期用含相应质量浓度抗生素的污水灌溉,对稻田模拟系统中抗生素的残留进行了检测。检测结果表明,SMT和ROX在各基质中均有检出,检出质量浓度为未检出~250.908 µg·kg−1。OFX和TET在稻米样品中未检出,但在其余基质中均有检出,检出质量浓度为未检出~272.354 µg·kg−1。
-
关键词:
- QuEChERS-LC-MS/MS /
- 抗生素 /
- 水稻 /
- 残留
Abstract: A method was developed for the determination of four target antibiotics residual in the rice field simulation system by liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with QuEChERS. By optimizing the pretreatment conditions, 5% formic acid-acetonitrile was used to extract the antibiotics in each matrix, and the internal standard method was used to quantization detection. The results show that the four target antibiotics had a good linear relationship in the range of 0.1—100 µg·L−1 (R2>0.998). The limits of detection (LOD) of ofloxacin (OFX), sulfamethoxazole (SMZ), roxithromycin (ROX) and tetracycline (TET) were 0.10, 0.10, 0.05 and 0.20 µg·L−1, respectively. The average recoveries of the four target compounds in paddy water, rice flour, rice plants (aboveground and underground parts) and paddy soil were 82.8%—166.1%, 78.1%—103.5%, 94.5%—97.8%, 67.7%—100.2%, 86.7%—93.9%, respectively, with relative standard deviations (RSD, n=6) of 0.3%—8.3%, 1.4%—13.8%, 1.1%—6.8% and 1.1%—2.4%, respectively. A paddy field simulation system was established and irrigated for a long-term by the simulated wastewater containing antibiotics with the corresponding mass concentration. The antibiotic residues in the paddy field simulation system were detected. SMT and ROX were detected in each matrix, and the detected mass concentration was not detected-250.908 µg·L−1. OFX and TET were not detected in rice flour, but were detected in all other matrices, and the detected mass concentration was not detected —272.354 µg·L−1.-
Key words:
- QuECHERS-LC-MS/MS /
- antibiotics /
- rice /
- residues
-
表 1 化合物的质谱检测条件
Table 1. Mass spectrometric detection conditions of the compounds
化合物 内标物 母离子 子离子 电离模式 碰撞能量/V SMZ SM-D4 254 155.9a,108.1b + 13,22 TET SMT 445 410a,154b + 17,25 ROX SMT 837.4 679.2a,157.9b + 18,30 OFX NOR-D5 362 261a,318b + 18,25 SMT 198 100.1a,68.2b + 25,35 NOR-D5 325 307a,281b + 20,16 SM-D4 283 185.9a,124.1b + 17,26 注:a 定量离子,b 定性离子。 表 2 目标化合物的线性范围、线性关系、相关系数及检出限
Table 2. Linear ranges, linear relationship, correlation coefficient and limit of detection (LOD) of the target compounds
化合物 浓度范围/(µg·L-1) 线性方程 R2 LOD/(µg·kg-1) 稻米 地上部分 地下部分 稻田土壤 SMZ 0.20~100 Y=1 438.74x-326.703 0.999 8 0.20 0.25 0.30 0.50 OFX 0.20~100 Y=8 377.53x-10 546.8 0.998 1 0.20 0.25 0.35 0.35 ROX 0.10~100 Y=4 707.46x+2 387.1 0.999 1 0.10 0.20 0.25 0.35 TET 0.50~100 Y=2 524.58x-3 041.32 0.998 6 0.50 0.50 0.80 0.85 -
[1] CARVALHO I T, SANTOS L. Antibiotics in the aquatic environments: A review of the European scenario[J]. Environment International, 2016, 94: 736-757. doi: 10.1016/j.envint.2016.06.025 [2] LIU X, GUO X, LIU Y, et al. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: Performance and microbial response[J]. Environmental Pollution, 2019, 254: 112996. doi: 10.1016/j.envpol.2019.112996 [3] GUAN Y, WANG B, GAO Y, et al. Occurrence and fate of antibiotics in the aqueous environment and their removal by constructed wetlands in China: A review[J]. Pedosphere, 2017, 27(1): 42-51. doi: 10.1016/S1002-0160(17)60295-9 [4] HIJOSA-VALSERO M, Fink G, Schlusener M P, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization[J]. Chemosphere, 2011, 83(5): 713-719. doi: 10.1016/j.chemosphere.2011.02.004 [5] BERGLUND B, KHAN G A, WEISNER S E, et al. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes[J]. Science of the Total Environment, 2014, 476-477: 29-37. doi: 10.1016/j.scitotenv.2013.12.128 [6] ZHU Y G, JOHNSON T A, SUU J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3435-3440. doi: 10.1073/pnas.1222743110 [7] ALINE A G, FABIO K, PAULO A Z P. Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment: A review[J]. Chemosphere, 2015, 138: 281-291. doi: 10.1016/j.chemosphere.2015.06.024 [8] VERLICCHI P, AUKIDY M, ZAMBELLO E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment: A review[J]. Science of the Total Environment, 2012, 429(7): 123-155. [9] JIN L L, MING H W. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China[J]. Environment International, 2013, 59: 208-224. doi: 10.1016/j.envint.2013.06.012 [10] 隋倩雯, 张俊亚, 魏源送, 等. 畜禽养殖废水生物处理与农田利用过程抗生素抗性基因的转归特征研究[J]. 环境科学学报, 2016, 36: 16-26. [11] HAMILTON A J, STAGNITTI F, XIONG X, et al. Wastewater irrigation: The state of play[J]. Vadose Zone Journal, 2007, 6(4): 823-840. doi: 10.2136/vzj2007.0026 [12] TOZE S. Reuse of effluent water-benefits and risks[J]. Agricultural Water Management, 2006, 80: 147-159. doi: 10.1016/j.agwat.2005.07.010 [13] FATTA K D, KALAVROUZIOTIS I K, KOUKOULAKIS P H, et al. The risks associated with wastewater reuse and xenobiotics in the agroecological environment[J]. Science of the Total Environment, 2011, 409(19): 3555-3563. doi: 10.1016/j.scitotenv.2010.03.036 [14] BAI X, MA X, XU F, et al. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance[J]. Science of The Total Environment, 2015, 533: 24-31. doi: 10.1016/j.scitotenv.2015.06.082 [15] CHEN C, LI J, CHEN P, et al. Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China[J]. Environmental pollution, 2014, 193: 94-101. doi: 10.1016/j.envpol.2014.06.005 [16] 黄璐, 杨成雄, 刘生鹏. 动物源性食品中抗生素残留的危害及检测方法[J]. 广州化工, 2021, 49(5): 44-47. doi: 10.3969/j.issn.1001-9677.2021.05.016 [17] LI Y, TAGGART M A, MCKENZIE C, et al. A SPE-HPLC-MS/MS method for the simultaneous determination of prioritised pharmaceuticals and EDCs with high environmental risk potential in freshwater[J]. Journal of Environmental Sciences, 2021, 100: 18-27. doi: 10.1016/j.jes.2020.07.013 [18] CHEN J, HE L X, CHENG Y X, et al. Trace analysis of 28 antibiotics in plant tissues (root, stem, leaf and seed) by optimized QuEChERS pretreatment with UHPLC-MS/MS detection[J]. Journal of Chromatography B, 2020, 1161: 122450. doi: 10.1016/j.jchromb.2020.122450 [19] ZHANG C Y, DENG Y C, ZHENG J F, et al. The application of the QuEChERS methodology in the determination of antibiotics in food: A review[J]. TrAC Trends in Analytical Chemistry, 2019, 118: 517-537. doi: 10.1016/j.trac.2019.06.012 [20] 严清. 典型PhACs在城市水系统中的迁移分布规律及其在人工湿地中的去除研究[D]. 重庆: 重庆大学, 2014. [21] LIU X, LIU Y, XU J R, et al. Tracking aquaculture-derived fluoroquinolones in a mangrove wetland, South China[J]. Environmental Pollution, 2016, 219: 916-923. doi: 10.1016/j.envpol.2016.09.011 [22] MATUSZEWSKI B K, CONSTANZER M L, CHAVEZ-ENG C M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS[J]. Analytical Chemistry, 2003, 75(13): 3019-3030. doi: 10.1021/ac020361s [23] LIU L, LIU Y H, LIU C X, et al. Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions[J]. Ecological Engineering, 2013, 53: 138-143. doi: 10.1016/j.ecoleng.2012.12.033 [24] YAN Q, XU Y, CHEN L, et al. Irrigation with secondary municipal-treated wastewater: Potential effects, accumulation of typical antibiotics and grain quality responses in rice (Oryza sativa L.)[J]. Journal of Hazardous Materials, 2020: 124655. [25] PAN M, WONG C K, CHU L M. Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River Delta, southern China[J]. Journal of Agricultural & Food Chemistry, 2014, 62(46): 11062-9. [26] SUN Y M, GUO Y J, SHI M M, et al. Effect of antibiotic type and vegetable species on antibiotic accumulation in soil-vegetable system, soil microbiota, and resistance genes[J]. Chemosphere, 2020, 263: 128099. [27] RIAZ L, MAHMOOD T, KHALID A, et al. Fluoroquinolones (FQs) in the environment: A review on their abundance, sorption and toxicity in soil[J]. Chemosphere, 2018, 191: 704-720. doi: 10.1016/j.chemosphere.2017.10.092 [28] VIENO N, TUHKANEN T, KRONBERG L. Elimination of pharmaceuticals in sewage treatment plants in Finland[J]. Water Research, 2007, 41(5): 1001-1012. doi: 10.1016/j.watres.2006.12.017 [29] PICO Y, ANDREU V. Fluoroquinolones in soil-risks and challenges[J]. Analytical & Bioanalytical Chemistry, 2007, 387(4): 1287-1299. [30] 陈磊, 吴赟琦, 赵志勇, 等. QuEChERS/超高效液相色谱-串联质谱法快速测定土壤中19种氟喹诺酮类抗生素残留[J]. 分析测试学报, 2019, 38(2): 194-200. doi: 10.3969/j.issn.1004-4957.2019.02.011 [31] GU J, CHEN C, HUANG X, et al. Occurrence and risk assessment of tetracycline antibiotics in soils and vegetables from vegetable fields in Pearl River Delta, South China[J]. Science of the Total Environment, 2021, 776: 145959. doi: 10.1016/j.scitotenv.2021.145959