-
氨氮去除是污水处理系统中的重点。应用传统脱氮工艺(硝化-反硝化)处理老龄垃圾渗滤液、工业废水等低碳氮比废水时,不仅能耗高,且需外加有机碳源[1]。短程硝化是将废水中
$ {\rm{N}}{{\rm{H}}^ +_4} $ -N转化为$ {\rm{N}}{{\rm{O}}^ -_{\rm{2}}} $ -N而阻止其进一步生成$ {\rm{N}}{{\rm{O}}^ -_{\rm{3}}} $ -N的过程[2-5]。将该过程连接厌氧氨氧化工艺(anaerobic ammonium oxidation,Anammox)或反硝化工艺处理废水时,具有能耗低、有机碳源利用量少、污泥产量少等优点,在处理低碳氮比废水方面可达到经济、高效的目的[6]。因利用短程硝化耦合Anammox工艺处理低C/N废水时具有较大优势,所以其工艺已成为研究热点。实现短程硝化的关键在于促进氨氧化菌(ammonia oxidizing bacteria,AOB)生长的同时抑制亚硝酸盐氧化菌(nitrite oxidizing bacteria,NOB)活性,从而保持稳定的亚硝酸盐积累。有研究[7]表明,溶解氧(dissolved oxygen,DO)、pH、温度、游离氨(free ammonia,FA)和游离亚硝酸(free nitrous acid,FNA)等因素能够抑制NOB活性,从而稳定短程硝化过程。吴雪等的[8]研究表明,在pH=8.5、DO=0.8 mg·L−1、温度为30 ℃时可有效抑制NOB活性,从而使亚硝酸盐的积累量达到最大。张宇坤等[9]认为,当FA质量浓度在10 mg·L−1附近时,NOB的活性下降接近50%,而当FNA质量浓度大于0.2 mg·L−1时,NOB的活性被完全抑制,故通过控制FA和FNA有利于实现短程硝化。短程硝化过程不仅会受到NOB活性的影响,而且废水中存在的有机碳源会对短程硝化和厌氧氨氧化过程产生影响,进而可能造成整个工艺无法稳定运行。梁瑜海等[10]认为,化学需氧量(chemical oxygen demand,COD)会抑制AOB和Anammox的活性,从而使反硝化活性上升。李冬等的[11]研究表明,在氨氮质量浓度为100 mg·L−1、COD为300~400 mg·L−1的运行条件下,由于大量COD的存在会使异养好氧菌增殖,从而抑制AOB的活性,影响自养脱氮系统性能的稳定性。CAPODICI等[12]认为,通过高氨氮负荷和高COD值的综合作用也会抑制AOB活性。上述研究均表明,一定的COD值会抑制AOB活性,但未涉及有机碳源对短程硝化系统影响的机理解释,且未通过探究得到明确的调控手段以应对其性能的下降。因此,研究有机碳源对短程硝化工艺启动及稳定性的影响及恢复系统性能的调控手段具有重要意义。
针对上述问题,本研究设置了不同质量浓度的
$ {\rm{N}}{{\rm{H}}_4}^ + $ -N和有机碳源,通过调控曝气量、FA和无机碳源量等运行参数,以达到启动并稳定运行短程硝化过程的目的。在此过程中考察了脱氮性能、细胞胞外聚合物(extracellular polymeric substances,EPS)、酶活性以及微生物群落的变化,进而探究有机碳源对该过程的影响及相应的应对策略,以期为短程硝化过程的启动及稳定运行提供依据,同时为后续连接厌氧氨氧化工艺处理老龄垃圾渗滤液提供参考。
有机碳源对短程硝化系统的影响及综合调控
Effect of organic carbon source on the performance of partial nitrification system and its comprehensive regulation
-
摘要: 为探究废水中有机碳源对短程硝化系统的影响和维持短程硝化稳定过程的运行条件,利用序批式反应器(SBR)启动短程硝化过程,同时分析有机碳源质量浓度对短程硝化过程的影响。结果表明:在运行至151 d时,反应器中
$ {{\rm{N}}{{\rm{H}}^ +_4}} $ -N去除率(ARR)与${ {\rm{N}}{{\rm{O}}^ -_{\rm{2}}}} $ -N积累率(NAR)分别稳定为(91±1.36)%和(99±0.04)%;在无有机碳源的环境中,仅通过调节曝气量即可成功启动短程硝化;在有机碳源存在的环境中,反硝化作用会随着有机碳源质量浓度的提高而加剧,并会加强抑制短程硝化,通过综合调控曝气量、游离氨(FA)和无机碳源量,可恢复稳定的短程硝化过程。微生物群落分析结果表明:反硝化菌属Comamonadaceae的相对丰度由0.70%上升至51.89%,说明在高质量浓度有机碳源中更有利于反硝化菌的生长;而主要功能菌亚硝化单胞菌属Nitrosomonas的相对丰度由34.70%下降至1.35%,在运行过程中短程硝化性能出现下降趋势。通过对运行参数的综合调控,最终可稳定运行短程硝化系统。Abstract: A sequencing batch reactor (SBR) was used to start the partial nitrification process. The impact of organic carbon sources in wastewater on the partial nitrification system and the operating conditions of the stable process, as well as the influence of the mass concentration of organic carbon sources on the partial nitrification process were studied. The results showed that after 151 days of operation, the$ {\rm{N}}{{\rm{H}}^ +_4} $ -N removal rate (ARR) and$ {\rm{N}}{{\rm{O}}^ -_2} $ -N accumulation rate (NAR) in the reactor were stable at (91±1.36)% and (99±0.04)%, respectively. In the environment without organic carbon source, partial nitrification could be successfully initiated only by adjusting the aeration rate. In the presence of organic carbon sources, denitrification increased with the increase of organic carbon source concentration, and the inhibition of partial nitrification was strengthened. Stable partial nitrification process could be restored through the comprehensive regulation of aeration rate, free ammonia (FA) and inorganic carbon source. Through the analysis of microbial community, the relative abundance of Comamonadaceae of denitrifying bacteria increased from 0.70% to 51.89%, indicating that high concentrations of organic carbon sources were conducive to the growth of denitrifying bacteria. The relative abundance of the main functional bacteria Nitrosomonas decreased from 34.70% to 1.35%, and the partial nitrification performance showed a downward trend during operation. However, through the comprehensive control of operating parameters, the partial nitrification system could maintain stable finally. -
表 1 短程硝化过程不同阶段下的运行参数
Table 1. Operational parameters of partial nitrification process at different phases
阶段 运行时间/d 质量浓度/(mg·L−1) 曝气速率/(mL·min−1) 进水pH -N$ {\rm{N}}{{\rm{H}}^ +_4} $ COD DO NaHCO3 Ⅰ 0~12 100 0 0.3~0.5 1 200 20~40 8.0±0.2 13~16 100 50 0.3~0.5 1 200 20~40 8.0±0.2 17~27 100 0 0.3~0.5 1 200 20~40 8.0±0.2 Ⅱ 28~44 200 0 0.3~0.5 1 200~2 000 100~150 8.0±0.2 45~66 200 70 0.3~0.5 1 200~2 000 100~150 8.0±0.2 Ⅲ 67~98 300 400 0.3~0.5 2 000 200~300 8.0±0.2 Ⅳ 99~145 500 670 0.3~0.5 3 000 300~1 000 7.3±0.2 -
[1] MIAO L, YANG G Q, TAO T, et al. Recent advances in nitrogen removal from landfill leachate using biological treatments: A review[J]. Journal of Environmental Management, 2019, 235: 178-185. [2] CAPODICI M, CORSINO S F, DI TRAPANI D, et al. Achievement of partial nitrification under different carbon-to-nitrogen ratio and ammonia loading rate for the co-treatment of landfill leachate with municipal wastewater[J]. Biochemical Engineering Journal, 2019, 149: 107229. doi: 10.1016/j.bej.2019.05.006 [3] CUI H H, ZHANG L, ZHANG Q, et al. Stable partial nitrification of domestic sewage achieved through activated sludge on exposure to nitrite[J]. Bioresource Technology, 2019, 278: 435-439. doi: 10.1016/j.biortech.2019.02.004 [4] SHE Z, ZHAO L, ZHANG X, et al. Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater[J]. Chemical Engineering Journal, 2016, 288: 207-215. doi: 10.1016/j.cej.2015.11.102 [5] 孙洪伟, 尤永军, 赵华南, 等. 游离氨对硝化菌活性的抑制及可逆性影响[J]. 中国环境科学, 2015, 35(1): 95-100. [6] LI J L, ZHANG L, PENG Y Z, et al. NOB suppression in partial nitritation-anammox (PNA) process by discharging aged flocs: performance and microbial community dynamics[J]. Chemosphere, 2019, 227: 26-33. doi: 10.1016/j.chemosphere.2019.04.023 [7] 付昆明, 廖敏辉, 任奕, 等. 污水短程硝化影响因素的对比分析[J]. 中国给水排水, 2019, 35(4): 24-29. [8] 吴雪, 赵鑫, 刘一威, 等. 高氨氮废水短程硝化系统影响因素研究[J]. 环境科学与技术, 2013, 36(S1): 5-9. [9] 张宇坤, 王淑莹, 董怡君, 等. 游离氨和游离亚硝酸对亚硝态氮氧化菌活性的影响[J]. 中国环境科学, 2014, 34(5): 1242-1247. [10] LIANG Y H, LI D, ZHANG X J, et al. Microbial characteristics and nitrogen removal of simultaneous partial nitrification, anammox and denitrification (SNAD) process treating low C/N ratio sewage[J]. Bioresource Technology, 2014, 169(5): 103-109. [11] 李冬, 何永平, 张肖静, 等. 有机碳源对SNAD工艺脱氮性能及微生物种群结构的影响[J]. 哈尔滨工业大学学报, 2016, 48(2): 68-75. doi: 10.11918/j.issn.0367-6234.2016.02.012 [12] CAPODICI M, CORSINO S F, TRAPANI D, et al. Achievement of partial nitrification under different carbon-to-nitrogen ratio and ammonia loading rate for the co-treatment of landfill leachate with municipal wastewater[J]. Biochemical Engineering Journal, 2019, 149: 107229. doi: 10.1016/j.bej.2019.05.006 [13] YE L H, LI D, ZHANG J, et al. Start-up and performance of partial nitritation process using short-term starvation[J]. Bioresource Technology, 2019, 276: 190-198. doi: 10.1016/j.biortech.2018.12.115 [14] TANG C J, ZHENG P, WANG C H, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research, 2011, 45(1): 135-144. doi: 10.1016/j.watres.2010.08.018 [15] LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5): 1022-1030. doi: 10.1016/j.watres.2006.06.037 [16] ZURIAGA A E, BES P A, MENDOZA R A, et al. Influence of extraction methods on proteins and carbohydrates analysis from MBR activated sludge flocs in view of improving EPS determination[J]. Separation and Purification Technology, 2013, 112: 1-10. doi: 10.1016/j.seppur.2013.03.048 [17] LI J B, WEI J L, NGO H H, et al. Characterization of soluble microbial products in a partial nitrification sequencing batch biofilm reactor treating high ammonia nitrogen wastewater[J]. Bioresource Technology, 2018, 249: 241-246. doi: 10.1016/j.biortech.2017.10.013 [18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [19] 季民, 刘灵婕, 翟洪艳, 等. 高浓度游离氨冲击负荷对生物硝化的影响机制[J]. 环境科学, 2017, 38(1): 260-268. [20] CHEN Y, ZHAO Z, LIU H, et al. Achieving stable two-stage mainstream partial-nitrification/anammox (PN/A) operation via intermittent aeration[J]. Chemosphere, 2020, 245: 125650. doi: 10.1016/j.chemosphere.2019.125650 [21] 吕心涛, 周桐, 田夏迪, 等. 不同污泥浓度下缺氧FNA对硝化菌活性的影响[J]. 环境科学, 2019, 40(7): 3195-3200. [22] 王盟, 李军, 卞伟, 等. 两段式曝气对短程硝化启动的影响研究[J]. 中国给水排水, 2016, 32(1): 35-38. [23] 巩有奎, 赵强, 彭永臻. 不同C/N下SBBR脱氮过程N2O释放及胞外多聚物变化 [J]. 化工学报, 2019, 70(12): 4847-4855. [24] 闫玉涛, 周凌, 冯骞, 等. 紊动对活性污泥特性及微生物代谢产物的影响[J]. 环境科学与技术, 2016, 39(5): 1-7. [25] 祁菁, 任俊颖, 赵凡, 等. 碱度对低氨氮部分亚硝化的影响与机理分析[J]. 环境科学与技术, 2019, 42(6): 121-127. [26] SOLIMAN M, ELDYASTI A. Ammonia-oxidizing bacteria (AOB): opportunities and applications: A review[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17(2): 285-321. doi: 10.1007/s11157-018-9463-4 [27] 张园, 罗固源, 许晓毅. UCT工艺的活性污泥特性及稳定性研究[J]. 中国给水排水, 2011, 27(1): 24-28. [28] 张驰, 刘永军, 刘喆, 等. 混凝强化造粒条件下好氧颗粒污泥中微生物的繁衍与聚集[J]. 水土保持学报, 2013, 27(5): 214-218. doi: 10.3969/j.issn.1009-2242.2013.05.042 [29] 徐旻旸, 胡湛波, 秦雅琪, 等. 智能化曝气控制A/O工艺处理低C/N生活污水有效性及其脱氮机制[J]. 环境工程学报, 2017, 11(10): 5359-5367. doi: 10.12030/j.cjee.201611046 [30] SUN H H, NARIHIRO T, MA X Y, et al. Diverse aromatic-degrading bacteria present in a highly enriched autotrophic nitrifying sludge[J]. Science of the Total Environment, 2019, 666: 245-251. doi: 10.1016/j.scitotenv.2019.02.172 [31] HONG H S, YANG L Y, GUO W D, et al. Characterization of dissolved organic matter under contrasting hydrologic regimes in a subtropical watershed using PARAFAC model[J]. Biogeochemistry, 2012, 109(1/2/3): 163-174. [32] CHEN M, PRICE R M, YAMASHITA Y, et al. Comparative study of dissolved organic matter from groundwater and surface water in the florida coastal everglades using multi-dimensional spectrofluorometry combined with multivariate statistics[J]. Applied Geochemistry, 2010, 25(6): 872-880. doi: 10.1016/j.apgeochem.2010.03.005 [33] OSBURN C L, STEDMON C A. Linking the chemical and optical properties of dissolved organic matter in the baltic–north sea transition zone to differentiate three allochthonous inputs[J]. Marine Chemistry, 2011, 126(1-4): 281-294. doi: 10.1016/j.marchem.2011.06.007 [34] WEI D, NGO H H, GUO W S, et al. Partial nitrification granular sludge reactor as a pretreatment for anaerobic ammonium oxidation (anammox): achievement, performance and microbial community[J]. Bioresource Technology, 2018, 269: 25-31. doi: 10.1016/j.biortech.2018.08.088 [35] ZOU X, ZHOU Y, GUO B, et al. Single reactor nitritation-denitritation for high strength digested biosolid thickening lagoon supernatant treatment[J]. Biochemical Engineering Journal, 2020, 160: 107630. doi: 10.1016/j.bej.2020.107630 [36] CAO Q, LI X C, JIANG H E, et al. Ammonia removal through combined methane oxidation and nitrification-denitrification and the interactions among functional microorganisms[J]. Water Research, 2021, 188: 116555. doi: 10.1016/j.watres.2020.116555 [37] LIU T, HE X, JIA G, et al. Simultaneous nitrifi cation and denitrifi cation process using novel surface-modified suspended carriers for the treatment of real domestic wastewater[J]. Chemosphere, 2020, 247: 125831. doi: 10.1016/j.chemosphere.2020.125831 [38] WEI Z S, WANG J B, HUANG Z S, et al. Removal of nitric oxide from biomass combustion by thermophilic nitrification-aerobic denitrification combined with catalysis in membrane biofilm reactor[J]. Biomass and Bioenergy, 2019, 126: 34-40. doi: 10.1016/j.biombioe.2019.05.004 [39] 陈佼, 张建强, 文海燕, 等. 羟胺抑制协同pH调控对人工快渗系统短程硝化的影响[J]. 环境科学学报, 2016, 36(10): 3728-3735. [40] LU H, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64(1): 237-254.