[1] |
MIAO L, YANG G Q, TAO T, et al. Recent advances in nitrogen removal from landfill leachate using biological treatments: A review[J]. Journal of Environmental Management, 2019, 235: 178-185.
|
[2] |
CAPODICI M, CORSINO S F, DI TRAPANI D, et al. Achievement of partial nitrification under different carbon-to-nitrogen ratio and ammonia loading rate for the co-treatment of landfill leachate with municipal wastewater[J]. Biochemical Engineering Journal, 2019, 149: 107229. doi: 10.1016/j.bej.2019.05.006
|
[3] |
CUI H H, ZHANG L, ZHANG Q, et al. Stable partial nitrification of domestic sewage achieved through activated sludge on exposure to nitrite[J]. Bioresource Technology, 2019, 278: 435-439. doi: 10.1016/j.biortech.2019.02.004
|
[4] |
SHE Z, ZHAO L, ZHANG X, et al. Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater[J]. Chemical Engineering Journal, 2016, 288: 207-215. doi: 10.1016/j.cej.2015.11.102
|
[5] |
孙洪伟, 尤永军, 赵华南, 等. 游离氨对硝化菌活性的抑制及可逆性影响[J]. 中国环境科学, 2015, 35(1): 95-100.
|
[6] |
LI J L, ZHANG L, PENG Y Z, et al. NOB suppression in partial nitritation-anammox (PNA) process by discharging aged flocs: performance and microbial community dynamics[J]. Chemosphere, 2019, 227: 26-33. doi: 10.1016/j.chemosphere.2019.04.023
|
[7] |
付昆明, 廖敏辉, 任奕, 等. 污水短程硝化影响因素的对比分析[J]. 中国给水排水, 2019, 35(4): 24-29.
|
[8] |
吴雪, 赵鑫, 刘一威, 等. 高氨氮废水短程硝化系统影响因素研究[J]. 环境科学与技术, 2013, 36(S1): 5-9.
|
[9] |
张宇坤, 王淑莹, 董怡君, 等. 游离氨和游离亚硝酸对亚硝态氮氧化菌活性的影响[J]. 中国环境科学, 2014, 34(5): 1242-1247.
|
[10] |
LIANG Y H, LI D, ZHANG X J, et al. Microbial characteristics and nitrogen removal of simultaneous partial nitrification, anammox and denitrification (SNAD) process treating low C/N ratio sewage[J]. Bioresource Technology, 2014, 169(5): 103-109.
|
[11] |
李冬, 何永平, 张肖静, 等. 有机碳源对SNAD工艺脱氮性能及微生物种群结构的影响[J]. 哈尔滨工业大学学报, 2016, 48(2): 68-75. doi: 10.11918/j.issn.0367-6234.2016.02.012
|
[12] |
CAPODICI M, CORSINO S F, TRAPANI D, et al. Achievement of partial nitrification under different carbon-to-nitrogen ratio and ammonia loading rate for the co-treatment of landfill leachate with municipal wastewater[J]. Biochemical Engineering Journal, 2019, 149: 107229. doi: 10.1016/j.bej.2019.05.006
|
[13] |
YE L H, LI D, ZHANG J, et al. Start-up and performance of partial nitritation process using short-term starvation[J]. Bioresource Technology, 2019, 276: 190-198. doi: 10.1016/j.biortech.2018.12.115
|
[14] |
TANG C J, ZHENG P, WANG C H, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research, 2011, 45(1): 135-144. doi: 10.1016/j.watres.2010.08.018
|
[15] |
LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5): 1022-1030. doi: 10.1016/j.watres.2006.06.037
|
[16] |
ZURIAGA A E, BES P A, MENDOZA R A, et al. Influence of extraction methods on proteins and carbohydrates analysis from MBR activated sludge flocs in view of improving EPS determination[J]. Separation and Purification Technology, 2013, 112: 1-10. doi: 10.1016/j.seppur.2013.03.048
|
[17] |
LI J B, WEI J L, NGO H H, et al. Characterization of soluble microbial products in a partial nitrification sequencing batch biofilm reactor treating high ammonia nitrogen wastewater[J]. Bioresource Technology, 2018, 249: 241-246. doi: 10.1016/j.biortech.2017.10.013
|
[18] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[19] |
季民, 刘灵婕, 翟洪艳, 等. 高浓度游离氨冲击负荷对生物硝化的影响机制[J]. 环境科学, 2017, 38(1): 260-268.
|
[20] |
CHEN Y, ZHAO Z, LIU H, et al. Achieving stable two-stage mainstream partial-nitrification/anammox (PN/A) operation via intermittent aeration[J]. Chemosphere, 2020, 245: 125650. doi: 10.1016/j.chemosphere.2019.125650
|
[21] |
吕心涛, 周桐, 田夏迪, 等. 不同污泥浓度下缺氧FNA对硝化菌活性的影响[J]. 环境科学, 2019, 40(7): 3195-3200.
|
[22] |
王盟, 李军, 卞伟, 等. 两段式曝气对短程硝化启动的影响研究[J]. 中国给水排水, 2016, 32(1): 35-38.
|
[23] |
巩有奎, 赵强, 彭永臻. 不同C/N下SBBR脱氮过程N2O释放及胞外多聚物变化 [J]. 化工学报, 2019, 70(12): 4847-4855.
|
[24] |
闫玉涛, 周凌, 冯骞, 等. 紊动对活性污泥特性及微生物代谢产物的影响[J]. 环境科学与技术, 2016, 39(5): 1-7.
|
[25] |
祁菁, 任俊颖, 赵凡, 等. 碱度对低氨氮部分亚硝化的影响与机理分析[J]. 环境科学与技术, 2019, 42(6): 121-127.
|
[26] |
SOLIMAN M, ELDYASTI A. Ammonia-oxidizing bacteria (AOB): opportunities and applications: A review[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17(2): 285-321. doi: 10.1007/s11157-018-9463-4
|
[27] |
张园, 罗固源, 许晓毅. UCT工艺的活性污泥特性及稳定性研究[J]. 中国给水排水, 2011, 27(1): 24-28.
|
[28] |
张驰, 刘永军, 刘喆, 等. 混凝强化造粒条件下好氧颗粒污泥中微生物的繁衍与聚集[J]. 水土保持学报, 2013, 27(5): 214-218. doi: 10.3969/j.issn.1009-2242.2013.05.042
|
[29] |
徐旻旸, 胡湛波, 秦雅琪, 等. 智能化曝气控制A/O工艺处理低C/N生活污水有效性及其脱氮机制[J]. 环境工程学报, 2017, 11(10): 5359-5367. doi: 10.12030/j.cjee.201611046
|
[30] |
SUN H H, NARIHIRO T, MA X Y, et al. Diverse aromatic-degrading bacteria present in a highly enriched autotrophic nitrifying sludge[J]. Science of the Total Environment, 2019, 666: 245-251. doi: 10.1016/j.scitotenv.2019.02.172
|
[31] |
HONG H S, YANG L Y, GUO W D, et al. Characterization of dissolved organic matter under contrasting hydrologic regimes in a subtropical watershed using PARAFAC model[J]. Biogeochemistry, 2012, 109(1/2/3): 163-174.
|
[32] |
CHEN M, PRICE R M, YAMASHITA Y, et al. Comparative study of dissolved organic matter from groundwater and surface water in the florida coastal everglades using multi-dimensional spectrofluorometry combined with multivariate statistics[J]. Applied Geochemistry, 2010, 25(6): 872-880. doi: 10.1016/j.apgeochem.2010.03.005
|
[33] |
OSBURN C L, STEDMON C A. Linking the chemical and optical properties of dissolved organic matter in the baltic–north sea transition zone to differentiate three allochthonous inputs[J]. Marine Chemistry, 2011, 126(1-4): 281-294. doi: 10.1016/j.marchem.2011.06.007
|
[34] |
WEI D, NGO H H, GUO W S, et al. Partial nitrification granular sludge reactor as a pretreatment for anaerobic ammonium oxidation (anammox): achievement, performance and microbial community[J]. Bioresource Technology, 2018, 269: 25-31. doi: 10.1016/j.biortech.2018.08.088
|
[35] |
ZOU X, ZHOU Y, GUO B, et al. Single reactor nitritation-denitritation for high strength digested biosolid thickening lagoon supernatant treatment[J]. Biochemical Engineering Journal, 2020, 160: 107630. doi: 10.1016/j.bej.2020.107630
|
[36] |
CAO Q, LI X C, JIANG H E, et al. Ammonia removal through combined methane oxidation and nitrification-denitrification and the interactions among functional microorganisms[J]. Water Research, 2021, 188: 116555. doi: 10.1016/j.watres.2020.116555
|
[37] |
LIU T, HE X, JIA G, et al. Simultaneous nitrifi cation and denitrifi cation process using novel surface-modified suspended carriers for the treatment of real domestic wastewater[J]. Chemosphere, 2020, 247: 125831. doi: 10.1016/j.chemosphere.2020.125831
|
[38] |
WEI Z S, WANG J B, HUANG Z S, et al. Removal of nitric oxide from biomass combustion by thermophilic nitrification-aerobic denitrification combined with catalysis in membrane biofilm reactor[J]. Biomass and Bioenergy, 2019, 126: 34-40. doi: 10.1016/j.biombioe.2019.05.004
|
[39] |
陈佼, 张建强, 文海燕, 等. 羟胺抑制协同pH调控对人工快渗系统短程硝化的影响[J]. 环境科学学报, 2016, 36(10): 3728-3735.
|
[40] |
LU H, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64(1): 237-254.
|