-
污泥是城市污水处理厂用生物法处理污水的副产物[1]。其中含有大量细菌、病毒及有机物,还含有镉、铬、铜、锌、铅等重金属和多氯联苯等有毒有害物质[2];且含水率高,可达99%[3]。近年来,随着污水处理厂的大量兴建,随之产生的污泥量也在逐年增加,污泥的处理处置问题日益突出[4]。
国内污泥处置方式主要包括填埋、土地利用、焚烧等[5]。然而这些常规的污泥处置方式已无法满足环保需求。近年来,国内外学者已将研究的焦点转向环境友好、资源化利用度高的污泥处理处置新技术[6-8]。其中,污泥热解是受到业界关注的新技术之一。污泥热解是在厌氧环境下,将污泥转换成生物气、生物油、水和生物炭的技术。该技术主要产物中的生物气和生物油,可作为能源使用[9-10];其固相产物——污泥生物炭,因具有丰富的可溶性盐和大量的有机官能团以及合适的孔隙结构[11],常被用作吸附剂和土壤改良剂。如TANG等[12]将酸碱改性的磁性污泥生物炭用于去除废水中有机污染物;MÉNDEZ等[13]研究了污泥生物炭在地中海土壤中施用后对植物金属累积性的影响。WU等[14]发现,污泥生物炭能降低污泥泥饼的含水量,具有作为污泥调理脱水过程中助滤剂的潜力。
目前,许多污水处理厂使用铁盐作为絮凝剂调理污泥,以提高污泥脱水性能;然而,污泥泥饼的高度可压缩性,限制了其进一步脱水的能力。助滤剂的加入能降低污泥泥饼的可压缩性,从而达到提高污泥脱水性能的目的[15]。本研究选用FeCl3单独调理后的含铁污泥泥饼进行热解,并对热解条件进行优化,以制备铁修饰污泥生物炭;将该铁修饰污泥生物炭作为助滤剂,与FeCl3联合调理污泥,探究铁修饰污泥生物炭对污泥脱水性能的影响及其机理,并分析联合调理后污泥的化学性质,研究其改善污泥脱水性能的可行性。
铁修饰的污泥生物炭对污泥脱水性能的改善效果
Iron-modified sludge biochar as a filter aid to improve sludge dewaterability
-
摘要: 为改善城市污水处理厂污泥的脱水性能,采用铁修饰污泥生物炭作为助滤剂,与FeCl3一起对污泥进行联合调理。以污泥净产率、污泥比阻和泥饼含水率评价污泥脱水性能;通过污泥Zeta电位、扫描电镜、EDS和泥饼可压缩性系数分析该方法的机理;同时,通过对污泥胞外聚合物、重金属以及总氯含量的分析,探究其调理污泥的环境风险,以明确该方法用于改善污泥脱水性能的可行性。结果表明,在500 ℃下制备的铁修饰污泥生物炭(30%)和FeCl3(12.82%)联合调理时,污泥脱水的效果最佳;与仅用FeCl3(12.82%)调理的污泥相比,污泥净产率升高了73.38%、污泥比阻降低了68.75%、泥饼含水率降低了9.03%。在较高温度下制备的铁修饰污泥生物炭,其孔隙结构更为发达、表面铁元素含量更高;与FeCl3联合调理污泥时,更容易发生絮凝,从而使泥饼的渗透性能更好。而且,在联合调理的条件下,污泥中溶解型、松散结合型和紧密结合型胞外聚合物的含量均有所降低;污泥泥饼中重金属(Cd、Cr、Cu、Pb、Zn)更为稳定,泥饼热解固相产物和非固相产物中总氯含量降低,环境生态风险更小。采用铁修饰污泥生物炭作为助滤剂,可改善污泥脱水性能,并具有实际应用的潜力。Abstract: Iron-modified sludge biochar was used as a filter aid to synergistically improve FeCl3 sludge in municipal sewage treatment plants conditioning and dewatering. Sludge dewaterability was evaluated by net sludge solid yield, sludge specific resistance to filtration and moisture content of sludge cakes. The conditioning mechanism was studied by the analysis of Zeta potential, scanning electron microscope, EDS and coefficient of compressibility of sludge cakes. At the same time, the environmental risk of conditioned sludge was studied through the analysis of extracellular polymeric substances, heavy metals and total chlorine content of sludge, to confirm the feasibility of improving sludge dewaterability with iron-modified sludge biochar. The results showed that the synergetic sludge conditioning with iron-modified sludge biochar(30%)prepared at 500 ℃ and FeCl3(12.82%)presented the best sludge dewaterability, and the net sludge solid yield increased by 73.38%, the sludge specific resistance to filtration decreased by 68.75%, and the moisture content of sludge cake decreased by 9.03%, compared with the sludge conditioning with FeCl3(12.82%)alone. The pore structure of iron-modified sludge biochar prepared at higher temperature was richer, and its surface iron content was higher. When it was used for sludge conditioning combined with FeCl3, leaded to easier sludge particle flocculation and better permeability of sludge cake. Moreover, with the synergetic sludge conditioning, the content of soluble, loosely bound- and tightly bound- extracellular polymeric substances reduced, the heavy metals (Cd, Cr, Cu, Pb, Zn) in sludge cakes were more stable, and the total chlorine content in solid and non-solid pyrolysis products of sludge cake reduced, therefore, the environmental ecological risk was lower. Iron-modified sludge biochar as a filter aid to improve sludge dewaterability had the potential of practical application.
-
Key words:
- sludge dewatering /
- iron-modified sludge biochar /
- ferric chloride /
- sludge conditioning /
- filter aid
-
表 1 不同调理方式下污泥的Zeta电位
Table 1. Zeta potential of sludge under different conditioning methods
mV 原污泥 FeCl3污泥 FeCl3+SB-300污泥 FeCl3+SB-400污泥 FeCl3+SB-500污泥 −10.80±0.54 −1.31±0.07 1.19±0.06 1.04±0.05 0.89±0.04 表 2 污泥生物炭表面铁元素质量分数
Table 2. Surface Fe element content of sludge biochar
% SB-300 SB-400 SB-500 5.63 6.25 7.44 表 3 干污泥中总氯的质量分数
Table 3. Total chlorine content of dry sludge
% 污泥种类 泥饼中 热解后固相中 原污泥 0.21 0.12 FeCl3污泥 1.16 0.65 FeCl3+SB-500污泥 1.02 0.53 -
[1] WU Y, ZHANG P, ZENG G, et al. Combined sludge conditioning of micro-disintegration, floc reconstruction and skeleton building (KMnO 4 /FeCl 3 /Biochar) for enhancement of waste activated sludge dewaterability[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74: 121-128. doi: 10.1016/j.jtice.2017.02.004 [2] WU Y, ZHANG P, ZENG G, et al. Enhancing sewage sludge dewaterability by a skeleton builder: Biochar produced from sludge cake conditioned with rice husk flour and FeCl3[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5711-5717. [3] 李晶. 壳聚糖絮凝剂对污泥脱水性能影响的研究[D]. 济南: 山东大学, 2008. [4] 冯宪凤, 丁杰伟. 剩余污泥处理处置过程中的流变学问题[J]. 环境科学与技术, 2019, 42(4): 88-93. [5] 郝晓地, 陈奇, 李季, 等. 污泥干化焚烧乃污泥处理/处置终极方式[J]. 中国给水排水, 2019, 35(4): 48-55. [6] 王耘, 曹敏颖. 城镇污水处理厂污泥处理处置问题及资源化利用探讨: 以HTU技术研究与应用为例[J]. 环境污染与防治, 2012, 34(4): 79-83. doi: 10.3969/j.issn.1001-3865.2012.04.017 [7] 何强, 吉芳英, 李家杰. 污泥处理处置及资源化途径与新技术[J]. 给水排水, 2016, 52(2): 1-3. [8] GHERGHEL A, TEODOSIU C, DE GISI S. A review on wastewater sludge valorisation and its challenges in the context of circular economy[J]. Journal of Cleaner Production, 2019, 228: 244-263. doi: 10.1016/j.jclepro.2019.04.240 [9] CAO Y, PAWŁOWSKI A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1657-1665. doi: 10.1016/j.rser.2011.12.014 [10] 庞赟佶, 刘心明, 陈义胜, 等. 生物炭负载Ca和Fe催化玉米秸秆热解挥发分重整提高产气率[J]. 农业工程学报, 2019, 35(3): 219-225. [11] ZIELIŃSKA A, OLESZCZUK P. Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene[J]. Bioresource Technology, 2015, 192: 618-626. doi: 10.1016/j.biortech.2015.06.032 [12] TANG L, YU J, PANG Y, et al. Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal[J]. Chemical Engineering Journal, 2018, 336: 160-169. doi: 10.1016/j.cej.2017.11.048 [13] MÉNDEZ A, GÓMEZ A, PAZ-FERREIRO J, et al. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil[J]. Chemosphere, 2012, 89(11): 1354-1359. doi: 10.1016/j.chemosphere.2012.05.092 [14] WU J, LU T, BI J, et al. A novel sewage sludge biochar and ferrate synergetic conditioning for enhancing sludge dewaterability[J]. Chemosphere, 2019, 237: 124339. doi: 10.1016/j.chemosphere.2019.07.070 [15] 吴彦, 平巍, 王翔, 等. 稻壳粉添加剂提高污泥的脱水效果研究[J]. 农业工程学报, 2019, 35(2): 229-234. [16] REBHUN M, ZALL J, GALIL N. Net sludge solids yield as an expression of filterability for conditioner optimization[J]. Water Pollution Control Federation, 1989, 61: 52-54. [17] QI Y, THAPA K B, HOADLEY A. Application of filtration aids for improving sludge dewatering properties: A review[J]. Chemical Engineering Journal, 2011, 171(2): 373-384. doi: 10.1016/j.cej.2011.04.060 [18] DOMÍNGUEZ L, RODRÍGUEZ M, PRATS D. Effect of different extraction methods on bound EPS from MBR sludges. Part I: Influence of extraction methods over three-dimensional EEM fluorescence spectroscopy fingerprint[J]. Desalination, 2010, 261(1/2): 19-26. doi: 10.1016/j.desal.2010.05.054 [19] 罗曦, 雷中方, 刘翔. 胞外聚合物的提取、组成及其对污泥性质的影响[J]. 城市环境与城市生态, 2005(5): 42-45. [20] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017 [21] FRØLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1 [22] 蓝巧娟, 吴彦, 闫彬, 等. 三峡库区(万州段)消落区沉积物重金属污染评价及来源分析[J]. 环境工程, 2018, 36(8): 193-197. [23] JAIN C K. Metal fractionation study on bed sediments of River Yamuna, India[J]. Water Research, 2004, 38(3): 569-578. doi: 10.1016/j.watres.2003.10.042 [24] LV S, SUN T, ZHOU Q, et al. Synthesis of starch-g-p(DMDAAC) using HRP initiation and the correlation of its structure and sludge dewaterability[J]. Carbohydrate Polymers, 2014, 103: 285-293. doi: 10.1016/j.carbpol.2013.12.036 [25] 刁韩杰, 张进, 王敏艳, 等. 高温热解对污泥炭特性及其重金属形态变化的影响[J]. 环境工程, 2019, 37(3): 29-34. [26] CHEN C, ZHANG P, ZENG G, et al. Sewage sludge conditioning with coal fly ash modified by sulfuric acid[J]. Chemical Engineering Journal, 2010, 158(3): 616-622. doi: 10.1016/j.cej.2010.02.021 [27] WU Y, ZHANG P, ZHANG H, et al. Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride[J]. Bioresource Technology, 2016, 205: 258-263. doi: 10.1016/j.biortech.2016.01.020 [28] 宋悦, 魏亮亮, 赵庆良, 等. 活性污泥胞外聚合物的组成与结构特点及环境行为[J]. 环境保护科学, 2017, 43(2): 35-40. [29] 同帜, 王瑞露, 曹秉帝, 等. 炭材料调理改善活性污泥脱水性能的影响机制[J]. 环境工程学报, 2018, 12(7): 248-259.