-
截至2020年底,我国污泥产量已超过6 000×104 t(含水率80%),给污水处理厂带来了沉重的负担。然而,剩余污泥中含有大量的有机质,如蛋白质、多糖等。利用厌氧发酵产挥发性脂肪酸(volatile fatty acids,VFAs)技术可实现污泥的减量化和资源化。但是,有机物转化率低是制约此技术推广应用的关键问题[1]。污泥高温热水解技术已被广泛用于污泥预处理,以提高发酵产酸性能。有研究报道指出,利用污泥热水解上清液进行液态发酵产酸,可明显提高产酸效率[2]。但是,在热水解过程中,会有一些具有抑制特性的有机物被大量释放至上清液,其中就包括腐殖酸(humic acids,HAs)。腐殖酸作为城市污泥的主要有机组分,一般占挥发性悬浮固体的6%~20%[3],其主要以惰性状态存在于污泥固相中。在传统发酵过程中,腐殖酸对污泥厌氧发酵产酸的影响常常被忽略。然而,在热水解上清液中,溶解性腐殖酸含量可高达1.0 g·L−1[4]。腐殖酸含有许多活性官能团,化学结构非常复杂[5]。这导致腐殖酸不仅会抑制污泥水解酶的活性[6],还会与底物结合,使微生物无法接触并利用底物[7]。因此,热水解释放的大量溶解性腐殖酸不可被忽略;如何避免腐殖酸对厌氧发酵产酸的抑制已成为研究热点。
现阶段,膜过滤法、混凝-超滤等常被用于处理饮用水中的溶解性腐殖酸。但这类方法易形成膜污染,影响膜的使用寿命且去除效率低下[8]。目前,国内外对于污泥中腐殖酸类物质的去除,主要是采用添加金属离子,通过静电力和阳离子交换作用来缓解腐殖酸对污泥厌氧发酵产酸的抑制作用[9]。然而,有研究者报道,热水解可促进大量腐殖酸由固相进入液相[10],其浓度约为天然水中的100倍[11]。如采用金属离子屏蔽腐殖酸,则需要投加过量金属离子,这就可能对环境造成二次污染。
腐殖酸是一种光敏化材料,利用光催化技术可高效去除天然水体中的腐殖酸[12]。但是,污泥水解液中溶解性腐殖酸含量较高,故较难去除。为此,本研究利用紫外光催化、钙盐化学絮凝以及这2种方法的耦合技术,对污泥中的腐殖酸进行结构特性以及可絮凝性的改变,以最终实现腐殖酸改性和去除的目的。该方法可为缓解厌氧发酵过程中腐殖酸对产酸的抑制作用,从而提高污泥有机物转化率提供参考。
紫外光催化耦合化学絮凝工艺及其对腐殖酸抑制污泥发酵产酸的缓解效果
UV photocatalysis coupled with chemical flocculation alleviates the inhibition of humic acids on VFAs production
-
摘要: 污泥热水解过程中释放的腐殖酸对厌氧发酵产挥发性脂肪酸存在抑制作用。针对该问题,采用单独使用紫外光催化或添加CaCl2化学絮凝及2种方法的耦合,以达到腐殖酸改性和去除的目的。结果表明:单独采用紫外光催化,腐殖酸的去除率仅达到17.68%,污泥发酵产酸率由原本的17.72%提高至20.73%;单独采用化学絮凝,腐殖酸的去除率为35.21%,发酵产酸率为27.96%;光催化耦合CaCl2化学絮凝后,腐殖酸胶体的Zeta电位上升至−1.76 mV,腐殖酸的去除率可达68.50%,污泥发酵产酸效率提高至31.64%。其主要原因是,光催化使得腐殖酸的荧光基团发生了脱落和重排,大分子变为可溶性更高的小分子,故增强了腐殖酸与其他物质之间的相互作用,从而提高了腐殖酸的可絮凝性;光催化改性后的腐殖酸可与Ca2+形成Ca-HA结合物,从而进一步降低了腐殖酸含量,最终缓解了腐殖酸对发酵产酸的抑制。本研究结果可为促进污泥发酵产酸、提高污泥有机物转化率提供参考。Abstract: Humic acids (HAs) released during the thermal hydrolysis of sludge had an inhibitory effect on the production of volatile fatty acids (VFAs) by anaerobic fermentation. UV photocatalysis, chemical flocculation and the coupling of the two methods were used to achieve the modification and removal of HAs. The results showed that the removal rate of HAs was only 17.68%, and the VFAs production efficiency increased from 17.72% to 20.73% by using UV photocatalysis alone. The removal rate of HAs was 35.21%, and the acid production efficiency was 27.96% by using chemical flocculation alone. The Zeta potential of HAs colloid raised to −1.76 mV, meanwhile, the removal rate of HAs reached up to 68.50%, and the acidification efficiency up to 31.64%, due to UV photocatalysis coupled with calcium salt dosing. The shedding or rearrangement of fluorescent groups resulted in part of large molecules being decomposed into soluble small molecules, which enhanced the interaction between HAs and solvent or solute molecules. The photocatalytically modified HAs would form a Ca-HA conjugate with Ca2+, reducing the concentration of HAs, causing the alleviation of inhibition on sludge anaerobic fermentation for VFAs production. This study had a positive effect on removing HAs released by thermal hydrolysis and promoting anaerobic fermentation for VFAs production.
-
Key words:
- humic acids /
- UV photocatalysis /
- chemical flocculation /
- anaerobic fermentation /
- volatile fatty acids
-
-
[1] 徐慧敏, 何国富, 戴晓虎, 等. 超声联合低温热水解促进剩余污泥破解和厌氧消化的研究[J]. 中国环境科学, 2016, 36(9): 2703-2708. doi: 10.3969/j.issn.1000-6923.2016.09.026 [2] LIU H B, WANG Y Y, WANG L, et al. Stepwise hydrolysis to improve carbon releasing efficiency from sludge[J]. Water Research, 2017, 119(1): 225-233. [3] 郝晓地, 唐兴, 李季, 等. 腐殖酸影响剩余污泥厌氧消化过程实验研究[J]. 环境科学报, 2018, 38(8): 3061-3068. [4] DARA S M, GHASIMI D, KAOUTAR A, et al. Impact of lignocellulosic-waste intermediates on hydrolysis and methanogenesis under thermophilic and mesophilic conditions[J]. Chemical Engineering Journal, 2016, 295: 181-191. doi: 10.1016/j.cej.2016.03.045 [5] AMIR S, JOURAIPHY A, MEDDICH A, et al. Structural study of humic acids during composting of activated sludge-green waste: elemental analysis, FTIR and 13C NMR[J]. Journal of Hazardous Materials, 2010, 177(1): 524-529. [6] WU W, SHAN G Q, XIANG Q, et al. Effects of humic acids with different polarities on the photocatalytic activity of nano-TiO2 at environment relevant concentration[J]. Water Research, 2017, 122(1): 78-85. [7] LI J, HAO X D, MARK C M, et al. Effect of humic acids on batch anaerobic digestion of excess sludge[J]. Water Research, 2019, 155(15): 431-443. [8] 李海洋, 程国玲. 电絮凝-膜分离反应器去除水中腐殖酸[J]. 工业水处理, 2020, 40(11): 32-35. [9] LI X D, WU B, ZHANG Q, et al. Complexation of humic acid with Fe ions upon persulfate/ferrous oxidation: Further insight from spectral analysis[J]. Journal of Hazardous Materials, 2020, 399: 123071. doi: 10.1016/j.jhazmat.2020.123071 [10] YANG Y, HUAN L I, JIN L I. Variation in humic and fulvic acids during thermal sludge treatment assessed by size fractionation, elementary analysis, and spectroscopic methods[J]. Frontiers of Environmental Science & Engineering, 2014, 8(6): 854-862. [11] 王文东, 王亚博, 范庆海, 等. 紫外辐射对小分子有机酸化学凝聚性作用途径探讨[J]. 环境科学, 2014, 35(10): 3789-3793. [12] 龚昕. 玻璃纤维负载二氧化钛光催化处理水中腐殖酸的应用基础研究[D]. 湘潭: 湖南科技大学, 2015. [13] 陆小游, 刘宏波, 黄芳, 等. 厌氧发酵产挥发性脂肪酸实现太湖蓝藻泥的减量与资源化[J]. 环境工程学报, 2020, 14(5): 1376-1384. doi: 10.12030/j.cjee.201907172 [14] 王元元, 刘和, 符波, 等. 活性污泥吸附联合发酵产酸资源化回收污水碳源[J]. 环境工程学报, 2017, 11(12): 6276-6281. doi: 10.12030/j.cjee.201702067 [15] CHOI J M, HAN S K, LEE C Y. Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment[J]. Bioresource Technology, 2018, 259: 207-213. doi: 10.1016/j.biortech.2018.02.123 [16] THURMAN E M, MALCOM R L. Preparative isolation of aquatic humic substances[J]. Environmental Science & Technology, 1981, 15(4): 463-466. [17] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [18] 刘亚子, 高占启. 腐殖质提取与表征研究进展[J]. 环境科技, 2011, 24(1): 76-80. [19] WANG W D, WANG W, FAN Q, et al. Effects of UV radiation on humic acid coagulation characteristics in drinking water treatment processes[J]. Chemical Engineering Journal, 2014, 256: 137-143. doi: 10.1016/j.cej.2014.06.113 [20] XU Y, LU Y, ZHENG L, et al. Effects of humic matter on the anaerobic digestion of sewage sludge: New insights from sludge structure[J]. Chemosphere, 2019, 243: 125421. [21] 朱江鹏, 梅婷, 彭云, 等. 荧光猝灭法研究洛克沙胂与腐殖酸的相互作用[J]. 环境科学, 2014, 35(7): 2620-2626. [22] 曹庆良, 夏建国. 低相对分子质量有机酸对无机纳米颗粒吸附-解吸Ca2+的影响[J]. 安全与环境学报, 2014, 14(3): 245-250. [23] LI J, HAO X D, MARK C M, et al. Relieving the inhibition of humic acid on anaerobic digestion of excess sludge by metal ions[J]. Water Research, 2021, 188: 116541. doi: 10.1016/j.watres.2020.116541 [24] 冯宝瑞, 刘海成, 李阳, 等. Fe3O4@SiO2@TiO2-AC光催化降解水源水中腐殖酸[J]. 工业水处理, 2020, 40(8): 55-59. [25] LIU K, CHEN Y G, XIAO N D, et al. Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge[J]. Environmental Science & Technology, 2015, 49: 4929-4936. [26] 丁光月, 李彩霞. Fe2O3可见光光催化降解水中腐殖酸的研究[J]. 应用化工, 2009(6): 788-791. doi: 10.3969/j.issn.1671-3206.2009.06.003 [27] 李艳. 土壤腐殖酸与酶蛋白相互作用的机制[D]. 武汉: 华中农业大学, 2013. [28] 肖骁. 生活垃圾填埋腐殖质电子转移规律研究[D]. 北京: 中国环境科学研究院, 2018. [29] 周鹏. 污泥厌氧消化过程腐殖质表征及其演变研究[D]. 北京: 北京建筑大学, 2014.