-
全氟辛烷磺酸(perfluorooctane sulphonate,PFOS)是一种新污染物,广泛存在于空气、水、土壤和底泥中[1-5],特别是氟化工生产企业附近的环境介质中[6-7]。PFOS的持久稳定性、潜在生物毒性和生物累积性等[8-10],会对危害人群健康[11-12],已引起相关学者的关注[13-14]。2000年,美国3M公司宣布禁止生产和应用PFOS[15]。欧盟化学品限制指令中规定PFOS作为产品成分的质量浓度应低于10 mg·kg−1[16]。一些国家和地区环保部门出台的规定中PFOS浓度限值标准为痕量级(1~1 000 μg·L−1),甚至远低于痕量级。如美国USEPA规定饮用水中PFOS和全氟辛酸(perfluoro caprylic acid,PFOA)的总浓度不超过0.07 μg·L−1[17];欧盟规定内陆地表水中PFOS的年平均质量浓度限值为0.000 65 μg·L−1,其中淡水可接受的最大值为36 μg·L−1,海洋年平均质量浓度限值为0.000 13 μg·L−1[18]。另外,在PFOS处理技术的研究中,如吸附[19-20]、高级氧化、零价铁还原和电化学处理等[21-26],PFOS的处理目标浓度亦为痕量级或低于痕量级。然而,测定痕量甚至远低于痕量级的浓度,对仪器分析及分析预处理过程的要求也更高。
测定痕量级的PFOS时,其浓度越低,相对标准偏差会越大,影响因素可能有以下4个方面。1)在实验和测定过程中,PFOS与各种化学试剂接触并混合,可能对PFOS浓度测定结果产生干扰。2)检测仪器自身问题,如基质效应产生离子抑制、流动相洗脱强度不同、出峰情况等,均可能对PFOS浓度测定产生影响[27]。3)在采样或实验时使用的容器或器材通常由特定材料制成,如玻璃、塑料等,可能影响测定结果。在涉及全氟化合物(PFASs,PFOS为PFASs中的一种)的实验测定过程中不能使用玻璃仪器及含聚四氟乙烯(polytetrafluoroethylene,PTFE)材料,原因是玻璃材质会吸附PFASs造成浓度损失;而PTFE材质的器皿因含有PFASs残留造成含量增多,均可导致测定数据误差增大[28-30]。USEPA及ISO标准方法中也规定PFASs的样品采集和检测分析中,样品不得与任何玻璃容器或注射器等转移仪器的材料接触,并建议使用聚丙烯(polypropylene,PP)容器用于样品溶液的制备和储存[31-32]。与之相反,有报道称,PP材质及含有PTFE过滤器对PFOA的吸附损失反而比玻璃大[33],这与ISO建议的标准方法相矛盾。4)针对PFOS样品中存在明显干扰杂质,以及环境样品中PFOS浓度低于痕量级等问题,一般需要进行萃取预处理,主要为固相萃取、液液萃取。固相萃取主要用于PFOS浓度低于痕量级的环境样品,使富集浓缩、净化后的PFOS甲醇溶液浓度达到仪器分析的检出限,并使相对标准偏差和回收率在合理范围内[6,29,34];液液萃取可有效去除样品中的细胞、组织或杂质,并使组分或杂质中吸收的PFOS得以释放[35-36]。上述2种预处理方式步骤多,易产生累积误差。针对无干扰杂质或组分且浓度为痕量级及以上的PFOS溶液,无需复杂的预处理过程,可采用水-甲醇混合液测定,即以PFOS溶液与甲醇按一定比例混合过滤后直接上机测定,如PARK等[37]将PFOS水溶液与甲醇以体积比为1∶1的比例混合过滤后上机测定,溶液中含有过硫酸盐;BRUTON等[38]将PFOS溶液先用水稀释5~10倍后,再用甲醇稀释5~25倍上机测定,且溶液中也含有过硫酸盐;另外,以避免出现操作过程中的误差,还可采用水溶液直接上机测定的方法[39]。
本研究针对PFOS痕量浓度测定中的误差问题,以PFOS标准溶液开展了探索性实验,对PFOS痕量级浓度分析误差的影响进行评估,明确测定过程中存在的问题,确定主要影响因素,以及解决影响因素的依据与方法,为PFOS及相关全氟化合物的测定提供参考。
新污染物PFOS痕量级测定中的影响因素及优化
Factors affecting and modification of the laboratory analysis of PFOS
-
摘要: 为解决PFOS浓度测定中的误差问题,开展了PFOS痕量级测定方法的影响因素研究。仪器分析表明:PFOS溶液标准曲线r=0.998 8,R2=0.997 7,线性关系好,拟合度高;100 μg·L−1的PFOS浓度测定允许误差约±6%,平均值置信区间为93.83~105.05 μg·L−1。对影响因素的分析表明:PP材质移液枪枪头和玻璃材质注射器均未导致明显系统误差和操作误差;在水与甲醇体积比为1∶9的混合液体系中,PP注射器、PTFE与Nylon滤膜的过滤器均导致PFOS的测定浓度增大,且并非材料中含有PFOS残留所致;以甲醇为溶剂时,PFOS待测液润洗后的PP材质注射器与针式过滤器对PFOS浓度测定无显著影响;以水为溶剂时,PP离心管、PP注射器和针式过滤器对PFOS浓度测定有显著影响,移液枪枪头和玻璃注射器未产生显著影响,故建议使用玻璃容器存放含有PFOS的水样品。液液萃取将水替换甲醇为溶剂,液液萃取操作步骤增多,虽然累积误差增大约1%,但测定精确度高,因此液液萃取具有较好的可行性。Abstract: To address the observed errors in PFOS concentration analysis, experiments were carried out to explore factors that influence the analysis of trace-level PFOS concentrations. Instrumental analysis suggested that the statistics of the standard curve of PFOS solution were r=0.998 8 and R2=0.997 7, indicating that the fitting of the linear relationship is good. The allowable error of 100 μg·L−1 PFOS concentration was about ±6%, and the average confidence interval was 93.83~105.05 μg·L−1. Experimental results showed that neither the PP material pipette tip nor the glass material syringe had significant impact. In the experiments with the 1∶9 of water/methanol mixing solution as the solvent, the PP syringe, PTFE and Nylon membrane filters increased the PFOS concentration, which was not caused by the residual PFOS in the materials. In the experiments using methanol as the solvent, the rinsed PP syringes and needle filters had no significant effects on the detection of PFOS. In experiments with pure water as the solvent, PP centrifuge tubes, PP syringes, and needle filters had a significant effect on the analytical results of PFOS concentration, and pipette tips and glass syringes had insignificant effects. Based on the experimental results, we recommend the use glass containers instead of PP ones when collecting water samples. In addition, the analytical results were more accurate for the method with the liquid-liquid extraction, which replaced the aqueous solution with methanol as the solvent, even though the liquid-liquid extraction cumulative error increased by 1% due to extra operation steps.
-
Key words:
- PFOS /
- measurement /
- pretreatment /
- sorption loss
-
表 1 针式过滤器的材料及信息
Table 1. Relevant information of different syringe filters
滤膜材质 颜色 参数 用途 供货商 PTFE 橙色 13 mm × 0.45 μm 水系 南京荣华科学器材有限公司 PTFE 红色 13 mm × 0.22 μm 水系 南京泰普瑞仪器设备有限公司 Nylon 绿色 13 mm × 0.22 μm 有机系 南京荣华科学器材有限公司 Nylon 粉色 13 mm × 0.45 μm 有机系 南京泰普瑞仪器设备有限公司 Nylon 紫色 13 mm × 0.45 μm 有机系 天津市科亿隆实验设备有限公司 -
[1] GUELFO J L, ADAMSON D T. Evaluation of a national data set for insights into sources, composition, and concentrations of per- and polyfluoroalkyl substances (PFASs) in US drinking water[J]. Environmental Pollution, 2018, 236: 505-513. doi: 10.1016/j.envpol.2018.01.066 [2] LU Z B, LU R, ZHENG H Y, et al. Correction to: Risk exposure assessment of per- and polyfluoroalkyl substances (PFASs) in drinking water and atmosphere in central Eastern China[J]. Environmental Science and Pollution Research, 2018, 25(10): 9321. doi: 10.1007/s11356-018-1608-z [3] LAU C. Perfluorinated compounds[M]//Experientia Supplementum. Basel: Springer Basel, 2012: 47-86. [4] WANG J, ZENG X W, BLOOM M S, et al. Renal function and isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS): Isomers of C8 Health Project in China[J]. Chemosphere, 2019, 218: 1042-1049. doi: 10.1016/j.chemosphere.2018.11.191 [5] 臧春元, 张硕, 孙力平, 等. 碳纳米管催化臭氧降解PFOS动力学与过程控制[J]. 环境工程学报, 2017, 11(3): 1459-1464. doi: 10.12030/j.cjee.201512059 [6] LIU Z Y, LU Y L, WANG T Y, et al. Risk assessment and source identification of perfluoroalkyl acids in surface and ground water: Spatial distribution around a mega-fluorochemical industrial park, China[J]. Environment International, 2016, 91: 69-77. doi: 10.1016/j.envint.2016.02.020 [7] 陈荣圻. PFOS的禁用及其相关整理剂和表面活性剂的替代(一)[J]. 上海染料, 2008, 36(6): 24-29. doi: 10.3969/j.issn.1008-1348.2008.06.004 [8] LESCORD G L, KIDD K A, DE SILVA A O, et al. Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian high arctic[J]. Environmental Science & Technology, 2015, 49(5): 2694-2702. [9] LIU S J, LU Y L, XIE S W, et al. Exploring the fate, transport and risk of perfluorooctane sulfonate (PFOS) in a coastal region of China using a multimedia model[J]. Environment International, 2015, 85: 15-26. doi: 10.1016/j.envint.2015.08.007 [10] WANG Z Y, COUSINS I T, SCHERINGER M, et al. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions[J]. Environment International, 2015, 75: 172-179. doi: 10.1016/j.envint.2014.11.013 [11] BARRY V, WINQUIST A, STEENLAND K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant[J]. Environmental Health Perspectives, 2013, 121(11/12): 1313-1318. [12] LLORCA M, FARRÉ M, TAVANO M S, et al. Fate of a broad spectrum of perfluorinated compounds in soils and biota from Tierra del Fuego and Antarctica[J]. Environmental Pollution, 2012, 163: 158-166. doi: 10.1016/j.envpol.2011.10.027 [13] NAILE J E, KHIM J S, HONG S, et al. Distributions and bioconcentration characteristics of perfluorinated compounds in environmental samples collected from the west Coast of Korea[J]. Chemosphere, 2013, 90(2): 387-394. doi: 10.1016/j.chemosphere.2012.07.033 [14] WANG P, LU Y L, WANG T Y, et al. Shifts in production of perfluoroalkyl acids affect emissions and concentrations in the environment of the Xiaoqing River Basin, China[J]. Journal of Hazardous Materials, 2016, 307: 55-63. doi: 10.1016/j.jhazmat.2015.12.059 [15] BUTENHOFF J L, OLSEN G W, PFAHLES-HUTCHENS A. The applicability of biomonitoring data for perfluorooctanesulfonate to the environmental public health continuum[J]. Environmental Health Perspectives, 2006, 114(11): 1776-1782. doi: 10.1289/ehp.9060 [16] THE EUROPEAN PARLIAMENT AND THE COUNCIL. On persistent organic pollutants and amending Directive 79/117/EEC: REGULATION (EC) No 850/2004 consolidate version 2012[S]. Publications Office of the European Union, 2012. [17] CORDNER A, DE LA ROSA V Y, SCHAIDER L A, et al. Guideline levels for PFOA and PFOS in drinking water: The role of scientific uncertainty, risk assessment decisions, and social factors[J]. Journal of Exposure Science & Environmental Epidemiology, 2019, 29(2): 157-171. [18] THE EUROPEAN PARLIAMENT AND THE COUNCIL. Amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy: Directive 2013/39/EU[S]. Publications Office of the European Union, 2013. [19] QU Y, ZHANG C J, LI F, et al. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 146-152. [20] WANG F, LIU C S, SHIH K. Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite[J]. Chemosphere, 2012, 89(8): 1009-1014. doi: 10.1016/j.chemosphere.2012.06.071 [21] PARK H, VECITIS C D, CHENG J, et al. Reductive defluorination of aqueous perfluorinated alkyl surfactants: Effects of ionic headgroup and chain length[J]. The Journal of Physical Chemistry A, 2009, 113(4): 690-696. doi: 10.1021/jp807116q [22] HORI H, MURAYAMA M, INOUE N, et al. Efficient mineralization of hydroperfluorocarboxylic acids with persulfate in hot water[J]. Catalysis Today, 2010, 151(1/2): 131-136. [23] SCHAEFER C E, ANDAYA C, URTIAGA A, et al. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs)[J]. Journal of Hazardous Materials, 2015, 295: 170-175. doi: 10.1016/j.jhazmat.2015.04.024 [24] KIM T H, LEE S H, KIM H Y, et al. Decomposition of perfluorooctane sulfonate (PFOS) using a hybrid process with electron beam and chemical oxidants[J]. Chemical Engineering Journal, 2019, 361: 1363-1370. doi: 10.1016/j.cej.2018.10.195 [25] YANG S W, CHENG J H, SUN J, et al. Defluorination of aqueous perfluorooctanesulfonate by activated persulfate oxidation[J]. PLoS One, 2013, 8(10): e74877. doi: 10.1371/journal.pone.0074877 [26] 刘晗, 许秦坤, 许建红. 紫外光助零价铁活化过硫酸盐降解全氟辛烷磺酸盐[J]. 西南科技大学学报, 2017, 32(1): 20-24. doi: 10.3969/j.issn.1671-8755.2017.01.004 [27] 蒋闳, 盛旋, 杨嫣嫣, 等. 全氟辛烷磺酰基化合物(PFOS)分析研究进展[J]. 安徽化工, 2007, 33(2): 5-10. doi: 10.3969/j.issn.1008-553X.2007.02.002 [28] AHRENS L, NORSTRÖM K, VIKTOR T, et al. Stockholm Arlanda Airport as a source of per- and polyfluoroalkyl substances to water, sediment and fish[J]. Chemosphere, 2015, 129: 33-38. doi: 10.1016/j.chemosphere.2014.03.136 [29] HANSEN K J, JOHNSON H O, ELDRIDGE J S, et al. Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River[J]. Environmental Science & Technology, 2002, 36(8): 1681-1685. [30] MARTIN J W, KANNAN K, BERGER U, et al. Analytical challenges hamper perfluoroalkyl research[J]. Environmental Science & Technology, 2004, 38(13): 248A-255A. [31] USEPA. Drinking water health advisory for perfluorooctanoic acid (PFOA): EPA 822-R-16-005[S]. Washington, DC, United States, 2016. [32] ISO. Water quality: Determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): Method for unfiltered samples using solid phase extraction and liquid chromatography/mass spectroscopy: ISO 25101[S]. Geneva, Switzerland, 2009. [33] LATH S, KNIGHT E R, NAVARRO D A, et al. Sorption of PFOA onto different laboratory materials: Filter membranes and centrifuge tubes[J]. Chemosphere, 2019, 222: 671-678. doi: 10.1016/j.chemosphere.2019.01.096 [34] WEI C L, WANG Q, SONG X, et al. Distribution, source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas[J]. Ecotoxicology and Environmental Safety, 2018, 152: 141-150. doi: 10.1016/j.ecoenv.2018.01.039 [35] 金一和, 刘晓, 张迅, 等. 人血清中全氟辛烷磺酰基化合物污染现状[J]. 中国公共卫生, 2003, 19(10): 1200-1201. doi: 10.3321/j.issn:1001-0580.2003.10.021 [36] HANSEN K J, CLEMEN L A, ELLEFSON M E, et al. Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices[J]. Environmental Science & Technology, 2001, 35(4): 766-770. [37] PARK S, LEE L S, MEDINA V F, et al. Heat-activated persulfate oxidation of PFOA, 6: 2 fluorotelomer sulfonate, and PFOS under conditions suitable for in situ groundwater remediation[J]. Chemosphere, 2016, 145: 376-383. doi: 10.1016/j.chemosphere.2015.11.097 [38] BRUTON T A, SEDLAK D L. Treatment of aqueous film-forming foam by heat-activated persulfate under conditions representative of in situ chemical oxidation[J]. Environmental Science & Technology, 2017, 51(23): 13878-13885. [39] WEI C L, SONG X, WANG Q, et al. Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties[J]. Ecotoxicology and Environmental Safety, 2017, 142: 40-50. doi: 10.1016/j.ecoenv.2017.03.040 [40] 华东师范大学. 分析化学[M]. 3版. 北京: 高等教育出版社, 2006. [41] BARTLETT P D, COTMAN J D. The kinetics of the decomposition of potassium persulfate in aqueous solutions of methanol[J]. Journal of the American Chemical Society, 1949, 71(4): 1419-1422. doi: 10.1021/ja01172a078