-
生化需氧量(biochemical oxygen demand,BOD)是表征天然水体及各类废水中有机物污染程度,并衡量水质的重要指标,与微生物代谢活动密切相关[1]。通常情况下,BOD以BOD5(五日生化需氧量)表示。传统的BOD5检测步骤为:水样采集、充氧、水样培养、测定。传统方法的优点是适用于大多数水样的检测,无需昂贵的设备。然而,传统方法也存在明显的局限性,比如操作比较复杂、重复性较差、干扰因素较多。其中,最大的缺点是检测所需时间长达5 d。因此,传统方法仅适合离线测定,较难用于污水处理工艺运行过程的在线调控。为此,国内外研究人员试图开发更可靠、响应速度更快、且满足在线监测需求的BOD测定方法。
微生物燃料电池(microbial fuel cell,MFC)传感器法是当前最有前景的BOD快速检测方法之一[2]。利用MFC测定BOD的基本原理是:MFC产生的电流强度及转移的库仑电荷量,与阳极有机物浓度高低直接相关,且在一定BOD范围内,电信号响应与BOD呈现良好的线性关系。KIM等[3]开发了双室无介体曝气微生物燃料电池并用其测定了淀粉废水BOD,线性检测限为0~206 mg·L−1,反应器总运行时间超过5年。ALFEROVA等[4]开发了一种双室MFC型BOD传感器。以电压为校准信号,该传感器对于标准底物葡萄糖/谷氨酸溶液(glucose and glutamic acid solution,GGS)的BOD线性检测范围(以O2计)为2.6~58 mg·L−1,检测时间为50~200 min,灵敏度系数为2.3 mV·L·mg−1,主要适用于较清洁的天然水体。WANG等[5]开发了一种以高锰酸钾为阴极电子受体的双室有膜MFC型BOD传感器,观察到电荷与BOD呈良好的线性关系(R2>0.992)。当采用浓度为10 mmol·L−1 的KMnO4溶液时,BOD检测范围为25~500 mg·L−1。但这种传感器长期运行时,质子交换膜和电极都可能会被高锰酸钾腐蚀,从而缩短生物传感器寿命。DI LORENZO等[6]设计了一种单室有膜MFC型BOD传感器,考察了人工废水为底物时,电信号与BOD呈线性相关时,BOD检测范围为0~350 mg·L−1。WANG等[7]开发了一种基于活性炭空气阴极的单室无膜MFC型BOD传感器,利用库仑量为电信号,将醋酸钠底物BOD直接检测的线性检测范围扩至1 280 mg·L−1,该浓度下检测时间为50 h。
现有研究表明,每种构型MFC各具优势和局限,均在不同程度上扩展了基于MFC的BOD检测方法的检测限和适用场景。其中,空气阴极型MFC相对更环保、研究最为广泛。但其作为传感器在检测时间、准确性、稳定性上仍存在优化空间,因此,有必要对其构型进行创新改进。本研究设计了一种新型空气阴极MFC,并评价其用于BOD快速检测的性能,以期为优化MFC型BOD传感器的性能提供参考。
空气阴极微生物燃料电池的构型优化及其快速测定BOD的性能评价
Configuration optimization of air cathode microbial fuel cell and its performance evaluation for rapid determination of BOD
-
摘要: 设计了一种新型双室空气阴极微生物燃料电池(MFC)并将其作为生物传感器,与传统双室空气阴极MFC进行对比,考察其电化学性能及用于快速检测BOD的性能。结果表明:新型空气阴极MFC可有效提高功率密度并降低内阻,其功率密度最高为897 mW·m−2,而内阻最低为92 Ω;该MFC可用于直接快速检测高浓度有机物的BOD,对醋酸钠底物的线性检测限为1 280 mg·L−1,在此底物浓度下MFC的检测时间为31.2~66 h,线性可决系数R2为0.97~0.99;对于GGA底物的线性检测限为1 250 mg·L−1,在此底物浓度下MFC的检测时间为33~67 h,线性可决系数R2为0.98。本研究可为MFC型BOD检测传感器的性能优化提供参考。Abstract: A new dual-chamber air cathode MFC was designed and compared with the traditional dual-chamber air cathode MFC to examine the electrochemical performance and the performance for rapid detection of BOD. Results show that the new designed air cathode MFC can effectively increase power density reaching up to 897 mW·m−2 and reduce internal resistanceto as low as 92 Ω. Moreover, it can be used to directly and quickly detect BOD of organic compounds with high concentration, with the linear detection limit of sodium acetate being 1 280 mg·L−1, response time at this concentration being 31.2~66 h, and the linear coefficient of determination R2 being 0.97~0.99. The linear detection limit of GGA can reach 1 250 mg·L−1. The response time at this concentration is 33~67 h, and the linear coefficient of determination R2 is 0.98. Our results provide a new pathway for the performance optimization of the MFC type BOD detection sensor.
-
Key words:
- microbial fuel cells /
- configuration optimization /
- BOD /
- rapid detection /
- performance evaluation
-
表 1 不同样品的BOD检测值
Table 1. BOD measurements of different samples
样品
编号MFC预测BOD的
平均值/(mg·L−1)MFC平均检测
时间/hBOD5实测平均值/
(mg·L−1)1 556.3 19 528.7 2 1 046.1 30.6 1 057.3 -
[1] ABREVAYA X C, SACCO N J, BONETTO M C, et al. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand[J]. Biosensors and Bioelectronics, 2015, 63: 580-590. doi: 10.1016/j.bios.2014.04.034 [2] JIANG Y, YANG X F, PENG L, et al. Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 292-305. doi: 10.1016/j.rser.2017.06.099 [3] KIM B H, CHANG I S, GILG C, et al. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell[J]. Biotechnology Letters, 2003, 25: 541-545. doi: 10.1023/A:1022891231369 [4] ALFEROVA S V, ARLYAPOVA V A, ALFEROVA V A, et al. Biofuel cell based on bacteria of the genus Gluconobacter as a sensor for express analysis of biochemical oxygen demand[J]. Applied Biochemistry and Microbiology, 2018, 54(6): 689-694. doi: 10.1134/S0003683818060029 [5] WANG S Q, TIAN S, ZHANG P Y, et al. Enhancement of biological oxygen demand detection with a microbial fuel cell using potassium permanganate as cathodic electron acceptor[J]. Journal of Environmental Management, 2019, 252: 1-7. [6] DI LORENZO M, CURTISA T P, HEAD I M, et al. A single-chamber microbial fuel cell as a biosensor for wastewaters[J]. Water Research, 2009, 43(13): 3145-3154. doi: 10.1016/j.watres.2009.01.005 [7] WANG Y, LIU X H, WANG M Y, et al. A single-chamber microbial fuel cell for rapid determination of biochemical oxygen demand using low-cost activated carbon as cathode catalyst[J]. Environmental Technology, 2018, 39(24): 3228-3237. doi: 10.1080/09593330.2017.1375998 [8] KIM J R, CHENG S A, OH S E, et al. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells[J]. Environmental Science & Technology, 2007, 41: 1004-1009. [9] 曹效鑫. 微生物燃料电池中产电菌与电极的作用机制及其应用[D]. 北京: 清华大学, 2009. [10] 何伟华. 空气阴极微生物燃料电池模块化构建与放大构型关键因素研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [11] LOGAN B E, WALLACK M J, KIM K Y, et al. Assessment of microbial fuel cell configurations and power densities[J]. Environmental Science & Technology Letters, 2015, 2(8): 206-214. [12] KIM B H, CHANG I S, GADD G M. Challenges in microbial fuel cell development and operation[J]. Applied Microbiology and Biotechnology, 2007, 76: 485-494. doi: 10.1007/s00253-007-1027-4 [13] LIU Y, TUO A X, JIN X J, et al. Quantifying biodegradable organic matter in polluted water on the basis of coulombic yield[J]. Talanta, 2018, 176: 485-491. doi: 10.1016/j.talanta.2017.08.029 [14] CHANG I S, MOON H, JANG J K, et al. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors[J]. Biosensors and Bioelectronics, 2005, 20: 1856-1859. doi: 10.1016/j.bios.2004.06.003 [15] YANG G X, SUN Y M, KONG X Y, et al. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor[J]. Water Science & Technology, 2013, 68(9): 1914-1919. [16] SPURR M W, YU E H, SCOTT K, et al. Extending the dynamic range of biochemical oxygen demand sensing with multi-stage microbial fuel cells[J]. Environmental Science: Water Research & Technology, 2018, 4: 2029-2040. [17] LIU J, MATTIASSON B. Microbial BOD sensors for wastewater analysis[J]. Water Research, 2002, 36: 3786-3802. doi: 10.1016/S0043-1354(02)00101-X [18] 杨芳, 李兆华, 肖本益. 微生物燃料电池内阻及其影响因素分析[J]. 微生物学通报, 2011, 38(7): 1098-1105.