-
我国机动车保有量达3.4×108辆[1]。燃油挥发是机动车污染物的重要来源。目前,我国每辆汽油车年均燃油挥发量为8.8 kg,而美国的这一数据仅为0.5 kg[2]。虽然国内汽车都已装备碳罐,但受制于碳罐用活性炭吸附能力有限,燃油挥发造成的损失仍然巨大。为加强机动车排放污染物控制,响应国家打赢蓝天保卫战的号召[3],生态环境部颁发了轻型车排放法规,即国六排放标准[4],于2020年7月1日起在全国范围内实施。受此影响,汽车燃油蒸发有效控制及回收成为研究热点。汽车碳罐作为燃油蒸发排放污染物控制系统的关键零部件之一,正面临升级换代,迫切需要研发高性能的汽车碳罐用活性炭。
汽车碳罐用活性炭特指装填于汽车碳罐的活性炭,用于吸附化油器、缸等处挥发出的汽油蒸气,以防止燃油挥发并污染大气环境。活性炭性能对碳罐工作能力有决定性影响。然而,此类活性炭的相关研究却报道较少,主要原因是该产品门槛较高、研发难度大,且难于打破大企业的垄断壁垒。目前,国内使用的此类活性炭主要依赖进口。20世纪90年代,美国美德维实伟克公司报道了采用磷酸活化经浸渍、低温处理、成型、活化制备颗粒活性炭的方法[5-9]。该方法所制备产品的丁烷工作容量(butane work capacity,BWCv。v表示本文中涉及的BWC均为体积工作容量)较高,但其预处理时间较长,需要20~70 h,因而不利于产品的连续生产。国内学者对该方法进行了改进,但制备周期仍大于10 h,且高温活化时间过长,能耗较大[10]。朱光真等[11]通过在制备过程中加入6%的浓硫酸催化木屑解聚,使活性炭的BWCv从119 g·L−1提高至144 g·L−1,但硫酸的使用造成了设备腐蚀和环境污染,后续治理成本较高。贺德留[12]研究了活化气氛对活性炭丁烷吸附性能的影响,发现活化气氛为二氧化碳时制备的活性炭丁烷工作容量高、丁烷持附性低。活性炭BWCv受孔径影响较大,丁烷吸附的理想孔径为微孔上限和中孔下限[13-14]。刘晓敏等[15]发现,孔径分布为1.2~6.0 nm的孔容积高的活性炭BWCv高。
本课题组从提高活性炭有效吸附孔径和表观密度的角度出发,通过烘焙提质、粒度调控对原料进行预处理,并采用真空捏合、模孔设计等工艺过程,改进了传统磷酸活化法制备活性炭的方式,以期制备高BWCv、高强度的活性炭产品,满足国六排放标准下碳罐用活性炭TGZ1500指标[16]要求,实现对进口同类活性炭的替代。
磷酸活化提升丁烷工作容量并制备高性能汽车碳罐用活性炭
Preparation of activated carbon with high butane work capacity for automobile carbon canister by phosphoric acid activation
-
摘要: 为满足汽车国六排放标准,以木屑为原料、磷酸为活化剂,制备了碳罐用高丁烷工作容量成型活性炭。在制备过程中通过烘焙提质、粒度调控对原料进行预处理,并采用了真空捏合、模孔设计、高温活化等工艺。考察了烘焙温度、原料粒度、浸渍比、真空捏合时间、活化温度、活化时间等制备条件对活性炭性能的影响。结果表明:原料经250 ℃烘焙、破碎至粒度小于0.2 mm及使用孔径为2.5 mm的模具成型,可明显提高制备活性炭的性能;当磷酸与原料浸渍比为1.5∶1,真空捏合为60 min、活化温度为500 ℃、活化时间为120 min时,制备的活性炭碘吸附值为1 028 mg·g−1、亚甲基蓝吸附值为270 mg·g−1、强度为92.4%、丁烷工作容量为152 g·L−1、BET比表面积为1 547.63 m2·g−1,性能可达到碳罐用活性炭TGZ1500指标要求。Abstract: To meet the requirements of the China’s stage 6 vehicle emission standards, high butane working capacity formed activated carbon was prepared with sawdust as raw material and phosphoric acid as activator. The sawdust was pretreated by torrefaction-upgrading and particle size control. Vacuum kneading, mold hole design, high temperature activation and other processes were used to produce the activated carbon. The effects of torrefaction temperature, particle size of raw materials, impregnation ratio, vacuum kneading time, activation temperature and activation time on the properties of activated carbon were investigated. Results showed that the properties of activated carbon could be significantly improved when the raw materials were torrefied at 250 ℃, crushed to a particle size less than 0.2 mm and molded by a mold with a pore diameter of 2.5 mm. The requirements by the TGZ1500 index of activated carbon for automobile carbon canister can be met with a impregnation ratio of 1.5∶1, vacuum kneading time of 60 min, activation temperature of 500 ℃ and activation time of 120 min. Under these conditions, iodine adsorption value of the prepared activated carbon was 1 028 mg·g−1, and the optimized properties were obtained including methylene blue adsorption value of 270 mg·g−1, strength of 92.4%, butane work capacity of 152 g·L−1, and BET specific surface area of 1 548 m2·g−1.
-
表 1 烘焙对活性炭性能的影响
Table 1. Effects of torrefaction on the properties of activated carbon
样品 Iv/
(mg·g−1)MBv/
(mg·g−1)BWCv/
(g·L−1)强度/% 得率/% Dry-100 ℃ 872 232.5 117 93.6 33.5 Trf-200 ℃ 990 265 136 93.2 33.7 Trf-250 ℃ 1028 270 152 92.4 34.6 Trf-300 ℃ 936 247.5 129 92.1 35.1 表 2 烘焙对原料纤维素、半纤维素和木质素质量分数的影响
Table 2. Effect of torrefaction on the content of cellulose, hemicellulose and lignin in raw materials
样品 纤维素/% 木质素/% 半纤维素/% Dry-100 ℃ 54.29 31.46 20.16 Trf-200 ℃ 51.55 36.02 15.42 Trf-250 ℃ 46.92 51.49 0.04 Trf-300 ℃ 3.15 96.51 0.04 表 3 原料粒度对活性炭性能的影响
Table 3. Effects of particle size on the properties of activated carbon
原料粒度/
mmIv/
(mg·g−1)MBv/
(mg·g−1)BWCv/
(g·L−1)强度/
%表观密度/
(g·mL−1)0.5~2 863 217.5 123 88.0 0.373 0.2~0.5 946 255 134 91.3 0.404 <0.2 1 028 270 152 92.4 0.413 表 4 模具孔径对活性炭粒度的影响
Table 4. Effects of mold aperture on the particle size of activated carbon
模具孔径/mm 活性炭粒度/mm 表观密度/(g·mL−1) 4 2.9~3.6 0.368 3 2.2~2.7 0.400 2.5 2.0~2.4 0.413 2 1.6~1.9 0.419 表 5 不同制备条件对活性炭性能的影响
Table 5. Effects of different preparation conditions on the properties of activated carbon
制备条件 Iv/
(mg·g−1)MBv/
(mg·g−1)BWCv/
(g·L−1)强度/
%得率/
%浸渍比1.0∶1 953 240 128 93.5 32.1 浸渍比1.5∶1 1 028 270 152 92.4 34.6 浸渍比2.0∶1 1 055 277.5 155 91.6 37.2 真空捏合时间0 min 897 225 129 87.9 35 真空捏合时间30 min 986 255 137 91.2 35.2 真空捏合时间60 min 1 028 270 152 92.4 34.7 真空捏合时间90 min 990 262.5 145 92.7 34.3 活化温度400 ℃ 1 043 270 149 86 50.2 活化温度450 ℃ 1 074 277.5 157 90.3 44.5 活化温度500 ℃ 1 028 270 152 92.4 34.6 活化温度550 ℃ 985 262.5 141 92.9 30.4 活化时间60 min 971 262.5 141 91.8 43.7 活化时间120 min 1 028 270 152 92.4 34.6 活化时间180 min 1 003 270 150 92.6 31 表 6 活性炭的基本参数
Table 6. Basic characteristics of activated carbon
样品 BET比表面积/
(m2·g−1)总孔容/
(cm3·g−1)平均孔径/
nm微孔孔容/
(cm3·g−1)中孔孔容/
(cm3·g−1)<3 nm孔的
孔容占比/%1.2~6 nm孔的
孔容占比/%AC1 1 547.63 0.792 2.38 0.338 0.390 74.30 74.34 AC2 1 143.14 0.666 2.68 0.269 0.391 66.47 65.03 -
[1] 中华人民共和国交通运输部. 2019年上半年全国机动车保有量达3.4亿辆[EB/OL]. [2020-04-10]. http://www.mot.gov.cn/guowuyuanxinxi/201907/t20190704_3221036.html, 2019-07-04. [2] 秦昊, 周维, 王雷, 等. 基于国六法规的燃油系统蒸发排放解决方案[J]. 汽车实用技术, 2018, 44(10): 56-58. [3] 中华人民共和国生态环境部. 国务院关于印发打赢蓝天保卫战三年行动计划的通知[EB/OL]. [2020-04-10]. http://zfs.mee.gov.cn/gz/bmhb/gwygf/201807/t20180705_446146.shtml, 2018-07-04. [4] 中华人民共和国生态环境部, 国家质量监督检验检疫总局. 轻型汽车污染物排放限值及测量方法(中国第六阶段): GB 18352.6-2016[S]. [2020-04-10]. 北京: 中国环境科学出版社, 2016. [5] TOLLES E D, DIMITRI M S, MATTHEWS C C. High activity, high density activated carbon: U. S. Patent 5204310[P]. 1993-04-20. [6] DIMITRI M S. Preparation for high activity, high density carbon: U. S. Patent 5304527[P]. 1994-04-19. [7] MATTHEWS C C, TOLLES E D. Preparation for high activity, high density carbon: U. S. Patent 5276000[P]. 1994-01-04. [8] YAN Z Q, MCCUE J C, TOLLES E D. Preparation of high activity, high density activated carbon with activatable binder: U. S. Patent 5538932[P]. 1996-07-23. [9] MCCUE J C, YAN Z Q, TOLLES E D. Method of preparation of gasoline vapor adsorptive activated carbon: U. S. Patent 5324703[P]. 1994-06-28. [10] 林鹏. 木质车用活性炭及其制备方法: ZL03125474.8[P]. 2004-09-15. [11] 朱光真, 邓先伦, 刘晓敏. 催化活化法制备高丁烷工作容量颗粒活性炭[J]. 功能材料, 2011, 42(S5): 884-887. [12] 贺德留. 磷酸法活化气氛对活性炭丁烷工作容量的影响[J]. 河南林业科技, 2015, 35(3): 18-20. doi: 10.3969/j.issn.1003-2630.2015.03.006 [13] 樊亚娟, 张双全, 姚国富, 等. 吸附汽油蒸气活性炭的制备研究[J]. 中国矿业大学学报, 2005, 34(6): 817-820. doi: 10.3321/j.issn:1000-1964.2005.06.029 [14] ALLEN J L, GATZ J L, EKLUND P C. Applications for activated carbons from used tires: Butane working capacity[J]. Carbon, 1999, 37(9): 1485-1489. doi: 10.1016/S0008-6223(99)00011-1 [15] 刘晓敏, 邓先伦, 朱光真, 等. 活性炭的物理性质与丁烷工作容量的关系[J]. 东北林业大学学报, 2011, 39(10): 107-109. doi: 10.3969/j.issn.1000-5382.2011.10.030 [16] 中华人民共和国国家林业和草原局, 全国林化产品标准化技术委员会. 燃油蒸发排放控制碳罐用颗粒活性炭: LY/T 2864-2017[S]. 北京: 中华人民共和国国家林业和草原局, 2019. [17] 高尚愚, 周建斌, 左宋林, 等. 碘值、亚甲基蓝及焦糖脱色力与活性炭孔隙结构的关系[J]. 南京林业大学学报, 1998, 22(4): 23-26. [18] 徐慧敏, 何国富, 刘伟, 等. H3PO4活化制备喜旱莲子草基活性炭及性能表征[J]. 环境工程学报, 2015, 9(6): 2761-2766. doi: 10.12030/j.cjee.20150636 [19] American Society of Testing Materials Standard. Test method for determination of butane working capacity of activated carbon: D5228-2016[S]. London: IHS Markit, 2016. [20] 陈应泉, 杨海平, 朱波, 等. 农业秸秆烘焙特性及对其产物能源特性的影响[J]. 农业机械学报, 2012, 43(4): 75-82. doi: 10.6041/j.issn.1000-1298.2012.04.016 [21] 王洋, 刘守新. 木质素对H3PO4法活性炭孔隙结构的影响[J]. 林产化学与工业, 2011, 31(3): 33-38. [22] 马承愚, 杨超, 古丽戈娜, 等. 磷酸法制备杏核壳活性炭及对Cr(Ⅵ)的吸附[J]. 环境工程学报, 2014, 8(8): 3223-3227. [23] 陈青, 周劲松, 刘炳俊, 等. 烘焙预处理对生物质气化工艺的影响[J]. 科学通报, 2010, 55(36): 3437-3443. [24] 龚春晓. 不同粉碎预处理方式对烘焙松木屑的影响[D]. 北京: 中国农业大学, 2016. [25] MA Z, YANG Y, MA Q, et al. Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 350-359. doi: 10.1016/j.jaap.2017.07.015 [26] ZHENG A, ZHAO Z, CHANG S, et al. Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs[J]. Bioresource Technology, 2015, 176: 15-22. doi: 10.1016/j.biortech.2014.10.157 [27] ARIAS B, PEVIDA C, FERMOSO J, et al. Influence of torrefaction on the grindability and reactivity of woody biomass[J]. Fuel Processing Technology, 2008, 89(2): 169-175. doi: 10.1016/j.fuproc.2007.09.002 [28] 田小云, 董寅生, 杨嘉楠, 等. 原料粒径与含水率对磷酸法活性炭性能的影响[J]. 林产化学与工业, 2016, 36(6): 93-99. doi: 10.3969/j.issn.0253-2417.2016.06.015 [29] WANG Z, MCDONALD A G, WESTERHOF R J M, et al. Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 56-66. doi: 10.1016/j.jaap.2012.11.017 [30] LIU Q S, ZHENG T, WANG P, et al. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation[J]. Industrial Crops & Products, 2010, 31(2): 233-238. [31] PRAHAS D, KARTIKA Y, INDRASWATI N, et al. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 32-42. [32] 林冠烽. 磷酸法自成型木质颗粒活性炭的制备过程与机理研究[D]. 北京: 中国林业科学研究院, 2013. [33] ROSAS J M, RUIZ-ROSAS R, RODRÍGUEZ-MIRASOL J, et al. Kinetic study of the oxidation resistance of phosphorus-containing activated carbons[J]. Carbon, 2012, 50(4): 1523-1537. doi: 10.1016/j.carbon.2011.11.030 [34] YANG R, LIU G, XU X, et al. Surface texture, chemistry and adsorption properties of acidblue 9 of hemp (Cannabis sativa L.) bast-based activated carbon fibers prepared by phosphoric acid activation[J]. Biomass Bioenergy, 2011, 35(1): 437-445. [35] 杨丹, 刘永军, 张弛, 等. 长柄扁桃核壳活性炭的制备及表征[J]. 环境工程学报, 2013, 7(12): 415-419. [36] ZUO S, YANG J, LIU J, et al. Significance of the carbonization of volatile pyrolytic products on the properties of activated carbons from phosphoric acid activation of lignocellulosic material[J]. Fuel Processing Technology, 2009, 90(7/8): 994-1001. doi: 10.1016/j.fuproc.2009.04.003 [37] ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids[J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758. doi: 10.1351/pac199466081739