-
斯里兰卡地处印度洋的核心区域,是东西方海运的必经之地和“一带一路”沿线的支点国家[1]。20世纪90年代,斯里兰卡北中省(North Central Province, NCP)发现了一种不明原因慢性肾病(chronic kidney diseases of uncertain etiology, CKDu),患者年龄跨度为17~70岁,其中重症患者多为30~60岁的男性农民[2],但其致病原因至今尚不清楚。世界卫生组织(World Health Organization, WHO)研究表明[3],饮用水是影响CKDu的主要因素之一,并推荐为当地居民提供安全饮用水是预防CKDu的一种有效方法。地下水是NCP干区(dry zone)居民最主要的饮用水水源。已有研究表明,硬度、F−和溶解性有机物(dissolved organic matter, DOM)是该地区地下水中最主要的超标污染物[4-5]。据统计,2018年斯里兰卡供水管网覆盖率为50.5%,且主要集中在首都科伦坡和康提等大城市[6];农村地区人口密度低,居住分散,市政管网供水覆盖率低,供水由社区组织(Community Based Organization, CBO)提供[7]。为解决CKDu病区安全饮用水问题,斯里兰卡政府在CKDu病区大力推广应用反渗透(reverse osmosis,RO)膜技术。2016年,CKDu病区已建成700多座RO膜饮用水站[8],处理规模0.5~3 m3·d−1。RO水站主要由砂滤、活性炭、微滤(microfiltration, MF)和RO构成,通常采用间歇操作模式,但存在如下主要问题:1) RO膜高压运行[9]和膜污染[10]造成了水站操作复杂,维护成本高;2) RO膜去除了水中包括单价盐类的绝大部分物质,影响了口感,致使当地民众对RO产水认可度不高;3) 大多数RO水站由个人或CBO运营,其水站运营维护和管理缺乏可遵循的统一规范[11]。因此,CKDu病区迫切需要引入操作简便、易于维护、水质安全可口、经济高效的饮用水处理技术。
本研究通过现场调研,考察旱季和雨季条件下斯里兰卡CKDu病区地下水水质特征,明确主要超标水质参数(硬度、F−和有机碳)的特征,据此开发基于纳滤膜的地下水源饮用水处理技术与设备,以期为斯里兰卡CKDu病区饮用水安全保障提供参考。
斯里兰卡CKDu病区地下水源水质分析及纳滤膜技术在该地区饮用水处理中的应用
Water quality analysis of and application of nanofiltration membrane technology in treating groundwater in CKDu affected areas of Sri Lanka
-
摘要: 针对斯里兰卡CKDu病区饮用水安全保障的需求,分别在雨季和旱季调查了斯里兰卡CKDu病区北中省Anuradhapura地区的地下水水质。结果表明,地下水中硬度和F−的平均质量浓度分别超过250.0 mg·L−1和1.49 mg·L−1,均高于斯里兰卡饮用水标准(SLS 614-2013),且溶解性有机物(DOC)平均质量浓度大于4.0 mg·L−1。在斯里兰卡Anuradhapura地区Sirimapura村援建以纳滤(NF)膜技术为核心的地下水源饮用水站,于2018年9月投入运行。运行结果表明,NF水站可有效去除地下水的硬度、F−和DOC,硬度、F−的平均截留率分别达80%和85%,DOC可完全去除,产水水质满足斯里兰卡国家饮用水水质标准(SLS 614-2013)。NF水站具有易于操作、便于维护、产水水质优异等优点,产水呈弱碱性(pH=7.3),且可保留部分对人体有益的矿物质。Abstract: For the provision of safe drinking water supply in CKDu affected areas in Sri Lanka, t this study investigated the groundwater quality of Anuradhapura, North Central Province, Sri Lanka in both wet and dry seasons, and developed a nanofiltration (NF) membrane-based water supply technology for CKDu prevalence zones. Results showed that the average concentrations of hardness and F− exceeded the limit values by the Sri Lankan Potable Water Standards (SLS 614-2013)(250 mg·L−1 and 1.0 mg·L−1 respectively), and the average concentration of dissolved organic matter (DOC) was higher than 4.0 mg·L−1 in most samples. A pilot NF-based groundwater treatment plant was developed and installed in Sirimapura village of Anuradhapura, Sri Lanka in September 2018, and its performance over one year showed that the NF-based plant can not only effectively remove hardness and F− in groundwater at their average rejection rates of 80% and 85%, respectively, but also nearly completely remove the DOC. The produced water quality of the NF-based plant was excellent and met the SLS 614-2013. The NF-based plant has advantages of easy operation & maintenance, excellent water quality of produced water with pH at 7.3 and keeping minerals and trace elements beneficial for human health.
-
Key words:
- Sri Lanka /
- CKDu affected area of Sri Lanka /
- groundwater /
- dissolved organic matter /
- nanofiltration
-
表 1 RO水站与NF水站产水比较
Table 1. Comparison of produced water quality in RO and NF plants
处理工艺及水质标准 pH EC/(μS·cm−1) 碱度/(mg·L−1) 硬度/(mg·L−1) F−/(mg·L−1) Ca/(mg·L−1) DOC/(mg·L−1) RO1) 6.48±0.63 37.94±29.52 11.06±8.3 3.2±3.2 0.87±1.16 1.21±1.12 0.87±0.78 NF 7.35±0.7 40.26±35 20±10.95 23.2±15.8 0.17±0.06 11.4±12.85 未检出 SLS 614-20132) 6.5-8.5 750 200 250 1 300 - 注:1) 8个RO水站产水水质的均值±标准偏差;2) SLS 614-2013为斯里兰卡饮用水水质标准。 -
[1] 中华人民共和国. 商务部国际贸易经济合作研究院对外投资合作国别(地区)指南: 斯里兰卡2019[EB/OL]. [2019-09-01]. http://www.mofcom.gov.cn/dl/gbdqzn/upload/sililanka.pdf, 2019. [2] NANAYAKKARA S, KOMIYA T, RATNATUNGA N, et al. Tubulointerstitial damage as the major pathological lesion in endemic chronic kidney disease among farmers in North Central Province of Sri Lanka[J]. Environmental Health and Preventive Medicine, 2012, 17(3): 213-221. doi: 10.1007/s12199-011-0243-9 [3] WHO. Chronic kidney disease of uncertain aetiology (CKDU) Sri Lanka[EB/OL]. (2012-02-13)[2020-06-01]. https://www.dh-web.org/place.names/posts/WHO-on-CKDU.pdf, 2012. [4] COORAY T. Characterization and treatment of groundwater by nanofiltration for CKDu prevailing areas of Sri Lanka[D]. 北京: 中国科学院大学, 2019. [5] MAKEHELWALA M. Characterization of DOC and its interaction with calcium in shallow groundwater of CKDu zones in Sri Lanka[D]. 北京: 中国科学院大学, 2019. [6] NWSDB. National Water Supply & Drainage Board: Annual Report 2018[R]. Sri Lanka, 2018. [2020-06-01] http://waterboard.lk/web/index.php?option=com_content&view=article&id=197&Itemid. [7] KAFLE K, BALASUBRAMANYA S, HORBULYK T. Prevalence of chronic kidney disease in Sri Lanka: A profile of affected districts reliant on groundwater[J]. Science of the Total Environment, 2019, 694: 133767. [8] JIANG S, LI Y, LADEWIG B P. A review of reverse osmosis membrane fouling and control strategies[J]. Science of the Total Environment, 2017, 595: 567-583. doi: 10.1016/j.scitotenv.2017.03.235 [9] JAYASUMANA C, RANASINGHE O, RANASINGHE S, et al. Reverse osmosis plant maintenance and efficacy in chronic kidney disease endemic region in Sri Lanka[J]. Environmental Health and Preventive Medicine, 2016, 21(6): 591-596. doi: 10.1007/s12199-016-0580-9 [10] SCHULTE-HERBRUGGEN H M A, SEMIAO A J C, CHAURAND P, et al. Effect of pH and pressure on uranium removal from drinking water using NF/RO membranes[J]. Environmental Science & Technology, 2016, 50(11): 5817-5824. [11] COORAY T, WEI Y, ZHANG J, et al. Drinking-water supply for CKDu affected areas of Sri Lanka, using nanofiltration membrane technology: From laboratory to practice[J]. Water, 2019, 11(12): 2512. doi: 10.3390/w11122512 [12] WASANA H M S, ALUTHPATABENDI D, KULARATNE W M T D, et al. Drinking water quality and chronic kidney disease of unknown etiology (CKDu): Synergic effects of fluoride, cadmium and hardness of water[J]. Environmental Geochemistry and Health, 2016, 38(1): 157-168. doi: 10.1007/s10653-015-9699-7 [13] DHARMA-WARDANA M W C, AMARASIRI S L, DHARMAWARDENE N, et al. Chronic kidney disease of unknown aetiology and ground-water ionicity: Study based on Sri Lanka[J]. Environmental Geochemistry and Health, 2015, 37(2): 221-231. doi: 10.1007/s10653-014-9641-4 [14] WIMALAWANSA S J. Molecular and cellular toxicity of fluoride in mystery, tubulointerstitial chronic kidney disease: A systematic review[J]. Reviews in Environmental Science and Bio-Technology, 2020, 19(1): 117-147. doi: 10.1007/s11157-019-09521-0 [15] NANAYAKKARA S, SENEVIRATHNA S T M L D, HARADA K H, et al. The Influence of fluoride on chronic kidney disease of uncertain aetiology (CKDu) in Sri Lanka[J]. Chemosphere, 2020, 257: 127186. doi: 10.1016/j.chemosphere.2020.127186 [16] KULATHUNGA M R D L, WIJAYAWARDENA M A A, NAIDU R, et al. Chronic kidney disease of unknown aetiology in Sri Lanka and the exposure to environmental chemicals: A review of literature[J]. Environmental Geochemistry and Health, 2019, 41(5): 2329-2338. doi: 10.1007/s10653-019-00264-z [17] CHANDRAJITH R, NANAYAKKARA S, ITAI K, et al. Chronic kidney diseases of uncertain etiology (CKDue) in Sri Lanka: Geographic distribution and environmental implications[J]. Environmental Geochemistry and Health, 2011, 33(3): 267-278. doi: 10.1007/s10653-010-9339-1 [18] WICKRAMARATHNA S, BALASOORIYA S, DIYABALANAGE S, et al. Tracing environmental aetiological factors of chronic kidney diseases in the dry zone of Sri Lanka: A hydrogeochemical and isotope approach[J]. Journal of Trace Elements in Medicine and Biology, 2017, 44: 298-306. doi: 10.1016/j.jtemb.2017.08.013 [19] MAKEHELWALA M, WEI Y, WERAGODA S K, et al. Characterization of dissolved organic carbon in shallow groundwater of chronic kidney disease affected regions in Sri Lanka[J]. Science of the Total Environment, 2019, 660: 865-875. doi: 10.1016/j.scitotenv.2018.12.435 [20] MAKEHELWALA M, WEI Y, WERAGODA S K, et al. Ca2+ and ${\rm{SO}}_4^{2 - }$ interactions with dissolved organic matter: Implications of groundwater quality for CKDu incidence in Sri Lanka[J]. Journal of Environmental Sciences, 2020, 88: 326-337. doi: 10.1016/j.jes.2019.09.018[21] COORAY T, WEI Y, ZHONG H, et al. Assessment of groundwater quality in CKDu affected areas of Sri Lanka: Implications for drinking water treatment[J]. International Journal of Environmental Research and Public Health, 2019, 16(10): 1698. doi: 10.3390/ijerph16101698 [22] CHANG H, LIU B, YANG B, et al. An integrated coagulation-ultrafiltration-nanofiltration process for internal reuse of shale gas flowback and produced water[J]. Separation and Purification Technology, 2019, 211: 310-321. doi: 10.1016/j.seppur.2018.09.081 [23] TOUATI K, GZARA L, MAHFOUDHI S, et al. Treatment of coastal well water using ultrafiltration-nanofiltration-reverse osmosis to produce isotonic solutions and drinking water: Fouling behavior and energy efficiency[J]. Journal of Cleaner Production, 2018, 200: 1053-1064. doi: 10.1016/j.jclepro.2018.08.024 [24] ABEYWICKARAMA B, RALAPANAWA U, CHANDRAJITH R. Geoenvironmental factors related to high incidence of human urinary calculi (kidney stones) in Central Highlands of Sri Lanka[J]. Environmental Geochemistry and Health, 2016, 38(5): 1203-1214. doi: 10.1007/s10653-015-9785-x [25] XI B, WANG X, LIU W, et al. Fluoride and arsenic removal by nanofiltration technology from groundwater in rural areas of China: Performances with membrane optimization[J]. Separation Science and Technology, 2014, 49(17): 2642-2649. doi: 10.1080/01496395.2014.939761 [26] FRASSETTO L, BANERJEE T, POWE N, et al. Acid balance, dietary acid load, and bone effects: A controversial subject[J]. Nutrients, 2018, 10(4): 517. doi: 10.3390/nu10040517