-
随着城市内河中氮和磷超标趋于严重,导致水体富营养化风险加大[1-3]。当城市内河外源污染得到有效控制时,其内源(底泥)释放的氮磷就成为导致水体富营养化的主要因素,并延缓生态系统的恢复[4-5]。因此,削减污染底泥氮磷释放是控制水体富营养化的主要措施之一[6]。
目前,削减底泥氮磷释放主要措施有疏浚技术和覆盖技术[7-8]。覆盖技术具有对底泥干扰小、工程造价低、可有效控制底泥氮磷向上层水迁移等优点,从而倍受国内外学者的关注[9-11]。覆盖技术的原理是:通过在底泥表面铺放覆盖材料使底泥与上层水体隔离,达到阻止底泥污染物向水体迁移的目的[12]。其中,覆盖材料是覆盖技术的核心,从早期惰性材料如砂砾、土壤等,发展到现在的各种活性材料如镧改性膨润土[13]、铁改性方解石[14]、改性氧化钙材料[11]等,活性薄层覆盖技术研究也愈加广泛与深入。但是,目前活性薄层覆盖技术在控制城市内河底泥氮磷释放实际工程中存在的问题有:覆盖材料施工时不易均匀铺设;城市内河雨季行洪排涝时,由于河水流速大、冲刷强度大,容易造成覆盖材料悬浮、流失,致使覆盖层变薄并逐渐失效[15-16]。因此,笔者所在课题组自主研发了一种城市河道污染底泥活性覆盖板的制作方法,进而提出一种基于产量高、成本适中的活性覆盖材料制备而成的具有抗冲刷性能好、透水性能高、均匀且形状多样、能够控制底泥氮磷释放的活性覆盖板以解决上述问题。
本研究中,以课题组自主研发的铝基锁磷剂[17-18]为主体材料,以水泥和粉煤灰为胶凝材料来制备活性覆盖板,分别研究了材料配比、水料比、成型压力和铝基锁磷剂颗粒粒径等4个因素对活性覆盖板抗冲刷性能和透水性能的影响,优选出较佳制备方式;并以污染底泥为研究对象,通过室内静态模拟实验探究了活性覆盖板覆盖控制氮磷释放效果。相关研究结果可为城市内河污染底泥活性覆盖板的实际应用提供参考。
河流底泥活性覆盖板的制备及其对城市内河底泥氮磷释放的抑制效果
Preparation of active capping plate for sediment in urban river and its effect on nitrogen and phosphorus reduction
-
摘要: 我国部分城市内河氮磷严重超标,成为水体富营养化的诱因之一,故需采取消减措施。底泥覆盖法可有效削减城市内河氮磷,但颗粒状覆盖材料具有施工时不易均匀覆盖、雨季行洪排涝时又易流失等问题,从而导致氮磷效果不理想。因此,本研究尝试采用活性覆盖板来控制底泥氮磷释放。活性覆盖板由铝基锁磷剂、水泥和粉煤灰作为主要原料制备而成。考察了材料配比、水料比、成型压力和铝基锁磷剂颗粒粒径等4个因素对活性覆盖板的抗冲刷性能和透水性能的影响;通过室内静态模拟实验探究了活性覆盖板覆盖对氮磷释放的控制效果。结果表明,活性覆盖板制备最佳工况条件为铝基锁磷剂(粒径1~3 mm)、水泥和粉煤灰占比分别为70%、15%和15%;水料比为0.25;成型压力为1.00 MPa;活性覆盖板具很好的抗冲刷性能和透水性能,其抗冲刷系数和透水系数分别为98.01%和0.139 cm·s−1;活性覆盖板主要含有Si、Al、Ca和Fe等元素,其质量分数分别为28.99%、26.99%、22.78%和14.50%;与对照系统相比,活性覆盖板系统对底泥TP和
${\rm{NH}}_4^ + $ -N释放的平均削减率分别为73.78%和53.93%;覆盖系统上覆水氮和磷质量浓度与对照系统均存在显著差异(P<0.05),由此可见,活性覆盖板能够有效控制污染河流底泥氮磷释放。Abstract: Nowadays, the overloaded nitrogen and phosphorus in some Chinese urban rivers was deemed one of the factors that induces water eutrophication. Thereby, it is necessary to take actions for eutrophication abatement. The in-situ capping method is an effective treatment method to reduce nitrogen and phosphorus in urban inner rivers. However, the granular capping material has problems such as not easy to be uniformly distributed during construction, and easy to lose during flooding and drainage in the rainy season, which leads to the deterioration of the reduction effect of nitrogen and phosphorus. Aiming at these problems, the active capping plates were seminally employed to reduce the nitrogen and phosphorus from contaminated sediment. In brief, this active capping plate was prepared from Al-PIA, cement and fly ash as the main raw materials. The effects of material ratio, water/material ratio, forming pressure and Al-PIA particle size on the scour resistance and water permeability were subsequently examined. In addition, the indoor static simulation test was conducted to investigate the performance of active capping plate on controlling the release of phosphorus and nitrogen by taking the contaminated sediment as the probe. The results revealed that the optimum working conditions for active capping plate preparation were following: the proportion of 70%, 15% and 15% for Al-PIA (particle size ranges from of 1~3 mm) cement or fly ash, respectively, the water/material ratio of 0.25, and forming pressure of 1.00 MPa. Under these conditions, the prepared active capping plate had good scour resistance and water permeability with scour resistance coefficient of 98.01% and water permeability coefficient of 0.139 cm·s−1. The active capping plate mainly contained elements such as Si, Al, Ca, Fe, and their mass fractions were 28.99%, 26.99%, 22.78%, 14.50%, respectively. Moreover, in comparison with the control system, the average reduction rates of TP and${\rm{NH}}_4^ + $ -N releasing from contaminated sediment by active capping plate system were 73.78% and 53.93%, respectively. The phosphorus and nitrogen concentrations in the overlying water of capping system significantly differed from those of the control system (P<0.05), indicating the active capping plate was effective in controlling the release of nitrogen and phosphorus from the contaminated sediment.-
Key words:
- urban inner river /
- contaminated sediment /
- capping /
- active capping plate /
- nitrogen /
- phosphorus
-
表 1 实验样品设计参数
Table 1. Design parameters of experiment sample
编号 铝基锁
磷剂/%水泥/% 粉煤
灰/%颗粒粒径/
mm成型压力/
MPa水料比 1 70 25 5 1~3 1.00 0.27 2 70 20 10 1~3 1.00 0.27 3 70 15 15 1~3 1.00 0.27 4 70 10 20 1~3 1.00 0.27 5 70 15 15 1~3 1.00 0.23 6 70 15 15 1~3 1.00 0.25 7 70 15 15 1~3 1.00 0.29 8 70 15 15 1~3 0.00 0.25 9 70 15 15 1~3 2.00 0.25 10 70 15 15 1~3 3.00 0.25 11 70 15 15 3~5 1.00 0.25 12 70 15 15 5~7 1.00 0.25 13 70 15 15 7~9 1.00 0.25 注:以上每种编号制备4个,分别用于测试抗冲刷性能和透水性能,每组2个。 -
[1] JIN X, ZHANG W Q, LI S M. Complex responses of suspended particulate matter in eutrophic river and its indicative function in river recovery process[J]. Ecological Indicators, 2020, 115: 106397. doi: 10.1016/j.ecolind.2020.106397 [2] YANG J, CHAN K M, GONG J. Seasonal variation and the distribution of endocrine-disrupting chemicals in various matrices affected by algae in the eutrophic water environment of the pearl river delta, China[J]. Environmental Pollution, 2020, 263: 114462. doi: 10.1016/j.envpol.2020.114462 [3] 郑剑锋, 焦继东, 孙力平, 等. 天津中心城区河网氮磷污染与富营养化特征[J]. 湖泊科学, 2018, 30(2): 326-335. doi: 10.18307/2018.0205 [4] POWERS S M, ROBERTSON D M, STANLEY E H. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes[J]. Hydrological Processes, 2014, 28(24): 5919-5937. doi: 10.1002/hyp.10083 [5] WU Z H, WANG S R, JI N N. Phosphorus (P) release risk in lake sediment evaluated by DIFS model and sediment properties: A new sediment P release risk index(SPRRI)[J]. Environmental Pollution, 2019, 255: 113-279. [6] LEWIS W M, WURTSBAUGH W A, PAERL H W. Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters[J]. Environmental Science & Technology, 2011, 45(24): 10300-10305. [7] 钟继承, 刘国锋, 范成新, 等. 湖泊底泥疏浚环境效应Ⅰ: 内源磷释放控制作用[J]. 湖泊科学, 2009, 21(1): 84-93. doi: 10.3321/j.issn:1003-5427.2009.01.011 [8] SPEARS B M, MABERLY S C, PAN G, et al. Geo-engineering in lakes: A crisis of confidence?[J]. Environmental Science & Technology, 2014, 48: 9977-9979. [9] GU B W, HONG S H, LEE C G, et al. The feasibility of using bentonite, illite, and zeolite as capping materials to stabilize nutrients and interrupt their release from contaminated lake sediments[J]. Chemosphere, 2019, 219: 217-226. doi: 10.1016/j.chemosphere.2018.12.021 [10] HUANG T L, ZHOU Z M, SU J F, et al. Nitrogen reduction in a eutrophic river canal using bioactive multilayer capping (BMC) with biozeolite and sand[J]. Journal of Soils and Sediments, 2013, 13: 1309-1317. doi: 10.1007/s11368-013-0703-5 [11] ZHOU J, LI D P, CHEN S T, et al. Sedimentary phosphorus immobilization with the addition of amended calcium peroxide material[J]. Chemical Engineering Journal, 2019, 357: 288-297. doi: 10.1016/j.cej.2018.09.175 [12] 孔明, 尹洪斌, 晁建颖, 等. 凹凸棒黏土覆盖对沉积物磷赋存形态的影响[J]. 中国环境科学, 2015, 35(7): 2192-2199. doi: 10.3969/j.issn.1000-6923.2015.07.046 [13] DING S M, SUN Q, CHEN X, et al. Synergistic adsorption of phosphorus by iron in lanthanum modified bentonite (Phoslock): New insight into sediment phosphorus immobilization[J]. Water Research, 2018, 134: 32-43. doi: 10.1016/j.watres.2018.01.055 [14] 柏晓云, 林建伟, 詹艳慧, 等. 利用铁改性方解石作为活性覆盖材料控制水体内源磷的释放[J]. 环境科学, 2020, 41(3): 1296-1307. [15] 唐艳, 胡小贞, 卢少勇. 污染底泥原位覆盖技术综述[J]. 生态学杂志, 2007, 26(7): 1125-1128. doi: 10.3321/j.issn:1000-4890.2007.07.028 [16] ZHANG C, ZHU M Y, ZENG G M, et al. Active capping technology: a new environmental remediation of contaminated sediment[J]. Environmental Science and Pollution Research, 2016, 23(5): 4370-4386. doi: 10.1007/s11356-016-6076-8 [17] 刘啟迪, 周真明, 张红忠, 等. 煅烧改性净水厂污泥制备除磷材料工艺参数优化[J]. 华侨大学学报(自然科学版), 2018, 39(1): 51-56. [18] ZHOU Z M, LIU Q D, LI S W, et al. Characterizing the correlation between dephosphorization and solution pH in a calcined water treatment plant sludge[J]. Environmental Science & Pollution Research, 2018, 25(19): 18510-18518. [19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [20] 亓转玲. 粉煤灰透水混凝土配合比设计及其性能研究[D]. 济南: 山东大学, 2019. [21] TEIXEIRA E R, CAMOES A, BRANCO F G, et al. Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete[J]. Waste Management, 2019, 94: 39-48. doi: 10.1016/j.wasman.2019.05.044 [22] 肖昭文, 李翠梅, 孙志康, 等. 黑臭河道底泥烧结透水砖与性能研究[J]. 硅酸盐通报, 2020, 39(2): 513-519. [23] 李书文, 周真明, 杨思明, 等. 煅烧改性净水厂污泥对底泥内源磷释放的控制效果[J]. 湖泊科学, 2019, 31(4): 961-968. doi: 10.18307/2019.0415 [24] ZHU Y Y, SHAN B Q, HUANG J Y, et al. In situ biochar capping is feasible to control ammonia nitrogen release from sediments evaluated by DGT[J]. Chemical Engineering Journal, 2019, 374: 811-821. doi: 10.1016/j.cej.2019.06.007 [25] ZHAN Y H, YU Y, LIN J W, et al. Simultaneous control of nitrogen and phosphorus release from sediments using iron-modified zeolite as capping and amendment materials[J]. Journal of Environmental Management, 2019, 249: 109369. doi: 10.1016/j.jenvman.2019.109369 [26] AL-TAHMAZI T, BABATUNDE A O. Mechanistic study of P retention by dewatered waterworks sludges[J]. Environmental Technology & Innovation, 2016, 6: 38-48. [27] 周双喜, 喻乐华, 邓文武. 火山岩火山灰活性及其反应动力学的研究[J]. 硅酸盐通报, 2014, 33(12): 3080-3084. [28] WANG T, ISHIDA T. Multiphase pozzolanic reaction model of low-calcium fly ash in cement systems[J]. Cement and Concrete Research, 2019, 122: 274-287. doi: 10.1016/j.cemconres.2019.04.015 [29] STRAFUL I, SCRIMSHAW M D, LESTER J N. Conditions influencing the precipitation of magnesium ammonium phosphate[J]. Water Research, 2001, 35(17): 4191-4199. doi: 10.1016/S0043-1354(01)00143-9 [30] CHEN X C, KONG H N, WU D Y, et al. Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal[J]. Journal of Environmental Sciences, 2009, 21(5): 575-580. doi: 10.1016/S1001-0742(08)62310-4 [31] LI C J, YU H X, TABASSUM S, et al. Effect of calcium silicate hydrates (CSH) on phosphorus immobilization and speciation in shallow lake sediment[J]. Chemical Engineering Journal, 2017, 317: 844-853. doi: 10.1016/j.cej.2017.02.117 [32] 金相灿, 贺凯, 卢少勇, 等. 4种填料对氨氮的吸附效果[J]. 湖泊科学, 2008, 20(6): 755-760. doi: 10.3321/j.issn:1003-5427.2008.06.009 [33] CHEN H M, ZHU Q, XING Z P. Adsorption of ammonia nitrogen in low temperature domestic wastewater by modification bentonite[J]. Journal of Cleaner Production, 2019, 233: 720-730. doi: 10.1016/j.jclepro.2019.06.079 [34] 韩剑宏, 杨冬梅, 刘派. 硅酸钙处理富营养化湖水中氨氮的实验研究[J]. 生态环境学报, 2013, 22(3): 490-493. doi: 10.3969/j.issn.1674-5906.2013.03.023 [35] 张新颖, 吴志超, 王志伟, 等. 天然斜发沸石粉对溶液中 ${\rm{NH}}_4^ + $ 的吸附机理研究[J]. 中国环境科学, 2010, 30(5): 609-614.[36] KIM K, KIM K. Remediation of contaminated intertidal sediment by increasing permeability using active capping material[J]. Journal of Environmental Management, 2020, 253: 109769. doi: 10.1016/j.jenvman.2019.109769