鱼腥藻毒素的生态毒性研究及展望

罗丛强, 王素钦, 左俊, 罗玉双, 甘南琴. 鱼腥藻毒素的生态毒性研究及展望[J]. 生态毒理学报, 2022, 17(5): 217-225. doi: 10.7524/AJE.1673-5897.20211014002
引用本文: 罗丛强, 王素钦, 左俊, 罗玉双, 甘南琴. 鱼腥藻毒素的生态毒性研究及展望[J]. 生态毒理学报, 2022, 17(5): 217-225. doi: 10.7524/AJE.1673-5897.20211014002
Luo Congqiang, Wang Suqin, Zuo Jun, Luo Yushuang, Gan Nanqin. Research and Prospects of Eco-toxicity of Anatoxins[J]. Asian journal of ecotoxicology, 2022, 17(5): 217-225. doi: 10.7524/AJE.1673-5897.20211014002
Citation: Luo Congqiang, Wang Suqin, Zuo Jun, Luo Yushuang, Gan Nanqin. Research and Prospects of Eco-toxicity of Anatoxins[J]. Asian journal of ecotoxicology, 2022, 17(5): 217-225. doi: 10.7524/AJE.1673-5897.20211014002

鱼腥藻毒素的生态毒性研究及展望

    作者简介: 罗丛强(1988-),男,博士研究生,研究方向为水环境生态修复,E-mail:luocqhn@126.com
    通讯作者: 王素钦, E-mail: suqinwanghn@outlook.com
  • 基金项目:

    湖南省自然科学基金资助项目(2021JJ40379,2021JJ50135);常德市科技创新专项资金资助项目(2020G178,2020S006)

  • 中图分类号: X171.5

Research and Prospects of Eco-toxicity of Anatoxins

    Corresponding author: Wang Suqin, suqinwanghn@outlook.com
  • Fund Project:
  • 摘要: 在全球水体富营养化和气候变暖不断加剧的背景下,蓝藻水华及其产生的蓝藻毒素给人类健康和生态环境带来的不利影响不容忽视。鱼腥藻毒素(anatoxins,ATXs)是由鱼腥藻、束丝藻和颤藻等淡水丝状蓝藻产生的一类具有神经毒性的毒素,直接饮用ATXs污染的水体或间接暴露于其中均可导致接触动物发生急性中毒事件。本文根据现有研究结果,综述介绍了ATXs的致毒机理、在水体的分布、生态毒性效应以及环境归趋,并对相关研究领域进行展望,以期为未来有效防控ATXs的污染提供科学参考。
  • 加载中
  • Visser P M, Verspagen J M H, Sandrini G, et al. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms[J]. Harmful Algae, 2016, 54:145-159
    Ho J C, Michalak A M, Pahlevan N. Widespread global increase in intense lake phytoplankton blooms since the 1980s[J]. Nature, 2019, 574(7780):667-670
    Osswald J, Rellán S, Gago A, et al. Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-A[J]. Environment International, 2007, 33(8):1070-1089
    Stavric B, Gorham P R. Toxic factors from Anabaena flos-aquae (Lyngb.) de Breb clone NRC-44 h[J]. Proceedings of the Canada Society. Plant Physiologists, 1966, 7:21
    Colas S, Marie B, Lance E, et al. Anatoxin-a:Overview on a harmful cyanobacterial neurotoxin from the environmental scale to the molecular target[J]. Environmental Research, 2021, 193:110590
    Devlin J P, Edwards O E, Gorham P R, et al. Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h[J]. Canadian Journal of Chemistry, 1977, 55(8):1367-1371
    Méjean A, Paci G, Gautier V, et al. Biosynthesis of anatoxin-a and analogues (anatoxins) in cyanobacteria[J]. Toxicon, 2014, 91:15-22
    Kaminski A, Bober B, Lechowski Z, et al. Determination of anatoxin-a stability under certain abiotic factors[J]. Harmful Algae, 2013, 28:83-87
    Valério E, Chaves S, Tenreiro R. Diversity and impact of prokaryotic toxins on aquatic environments:A review[J]. Toxins, 2010, 2(10):2359-2410
    Fiore M F, de Lima S T, Carmichael W W, et al. Guanitoxin, re-naming a cyanobacterial organophosphate toxin[J]. Harmful Algae, 2020, 92:101737
    Viaggiu E, Melchiorre S, Volpi F, et al. Anatoxin-a toxin in the cyanobacterium Planktothrix rubescens from a fishing pond in northern Italy[J]. Environmental Toxicology, 2004, 19(3):191-197
    Namikoshi M, Murakami T, Watanabe M F, et al. Simultaneous production of homoanatoxin-a, anatoxin-a, and a new non-toxic 4-hydroxyhomoanatoxin-a by the cyanobacterium Raphidiopsis mediterranea Skuja[J]. Toxicon:Official Journal of the International Society on Toxinology, 2003, 42(5):533-538
    Ballot A, Krienitz L, Kotut K, et al. Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley Lakes of Kenya-Lakes Bogoria, Nakuru and Elmenteita[J]. Journal of Plankton Research, 2004, 26(8):925-935
    Ghassempour A, Najafi N M, Mehdinia A, et al. Analysis of anatoxin-a using polyaniline as a sorbent in solid-phase microextraction coupled to gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2005, 1078(1-2):120-127
    Mann S, Cohen M, Chapuis-Hugon F, et al. Synthesis, configuration assignment, and simultaneous quantification by liquid chromatography coupled to tandem mass spectrometry, of dihydroanatoxin-a and dihydrohomoanatoxin-a together with the parent toxins, in axenic cyanobacterial strains and in environmental samples[J]. Toxicon:Official Journal of the International Society on Toxinology, 2012, 60(8):1404-1414
    Wood S A, Smith F M, Heath M W, et al. Within-mat variability in anatoxin-a and homoanatoxin-a production among benthic Phormidium (cyanobacteria) strains[J]. Toxins, 2012, 4(10):900-912
    Puddick J, van Ginkel R, Page C D, et al. Acute toxicity of dihydroanatoxin-a from Microcoleus autumnalis in comparison to anatoxin-a[J]. Chemosphere, 2021, 263:127937
    Wang S Q, Zhu L, Li Q, et al. Distribution and population dynamics of potential anatoxin-a-producing cyanobacteria in Lake Dianchi, China[J]. Harmful Algae, 2015, 48:63-68
    Wang Z J, Liu Y, Xu Y, et al. The divergence of cpcBA-IGS sequences between Dolichospermum and Aphanizomenon (Cyanobacteria) and the molecular detection of Dolichospermum flos-aquae in Taihu Lake, China[J]. Phycologia, 2013, 52(5):447-454
    陈有信. 中国水体中产神经毒素蓝藻的分布、分子特征及监测[D]. 北京:中国科学院大学, 2018:62-80 Chen Y X. Distribution, molecular characteristics and monitoring of neutroxin-producing cyanobacteria in China[D]. Beijing:University of Chinese Academy of Sciences, 2018:62

    -80(in Chinese)

    Thomas P, Stephens M, Wilkie G, et al. (+)-Anatoxin-a is a potent agonist at neuronal nicotinic acetylcholine receptors[J]. Journal of Neurochemistry, 1993, 60(6):2308-2311
    Carmichael W W. The toxins of cyanobacteria[J]. Scientific American, 1994, 270(1):78-86
    Christoffersen K, Kaas H. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring, and management[J]. Limnology and Oceanography, 2000, 45(5):1212
    McAllister T G, Wood S A, Atalah J, et al. Spatiotemporal dynamics of Phormidium cover and anatoxin concentrations in eight New Zealand rivers with contrasting nutrient and flow regimes[J]. The Science of the Total Environment, 2018, 612:71-80
    Fastner J, Beulker C, Geiser B, et al. Fatal neurotoxicosis in dogs associated with tychoplanktic, anatoxin-a producing Tychonema sp. in mesotrophic Lake Tegel, Berlin[J]. Toxins, 2018, 10(2):E60
    United States Environmental Protection Agency (US EPA). Health effects support document for the cyanobacterial toxin cylindrospermopsin[R]. Washington DC:US EPA, 2015
    Carmichael W W, Boyer G L. Health impacts from cyanobacteria harmful algae blooms:Implications for the North American Great Lakes[J]. Harmful Algae, 2016, 54:194-212
    Skulberg O M, Skulberg R, Carmichael W W, et al. Investigations of a neurotoxic oscillatorialean strain (Cyanophyceae) and its toxin. Isolation and characterization of homoanatoxin-a[J]. Environmental Toxicology and Chemistry, 1992, 11(3):321-329
    Krienitz L, Ballot A, Kotut K, et al. Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya[J]. FEMS Microbiology Ecology, 2003, 43(2):141-148
    Metcalf J S, Morrison L F, Krienitz L, et al. Analysis of the cyanotoxins anatoxin-a and microcystins in lesser flamingo feathers[J]. Toxicological & Environmental Chemistry, 2006, 88(1):159-167
    Nowruzi B, Blanco S, Nejadsattari T. Chemical and molecular evidences for the poisoning of a duck by anatoxin-a, nodularin and cryptophycin at the coast of Lake Shoormast (Mazandaran Province, Iran)[J]. International Journal on Algae, 2018, 20(4):359-376
    Bauer F, Fastner J, Bartha-Dima B, et al. Mass occurrence of anatoxin-a- and dihydroanatoxin-a-producing Tychonema sp. in mesotrophic reservoir Mandichosee (River Lech, Germany) as a cause of neurotoxicosis in dogs[J]. Toxins, 2020, 12(11):E726
    Behm D. Coroner cites algae in teen's death-experts are uncertain about toxin's role[J]. Milwaukee Journal Sentinel, 2003, 1:1
    Weirich C A, Miller T R. Freshwater harmful algal blooms:Toxins and children's health[J]. Current Problems in Pediatric and Adolescent Health Care, 2014, 44(1):2-24
    Pawlik-Skowrońska B, Toporowska M, Rechulicz J. Simultaneous accumulation of anatoxin-a and microcystins in three fish species indigenous to lakes affected by cyanobacterial blooms[J]. Oceanological and Hydrobiological Studies, 2012, 41(4):53-65
    Biré R, Bertin T, Dom I, et al. First evidence of the presence of anatoxin-a in sea figs associated with human food poisonings in France[J]. Marine Drugs, 2020, 18(6):E285
    Rellán S, Osswald J, Saker M, et al. First detection of anatoxin-a in human and animal dietary supplements containing cyanobacteria[J]. Food and Chemical Toxicology, 2009, 47(9):2189-2195
    Colas S, Duval C, Marie B. Toxicity, transfer and depuration of anatoxin-a (cyanobacterial neurotoxin) in medaka fish exposed by single-dose gavage[J]. Aquatic Toxicology, 2020, 222:105422
    Wiegand C, Pflugmacher S. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review[J]. Toxicology and Applied Pharmacology, 2005, 203(3):201-218
    Zhong Y C, Shen L L, Ye X P, et al. Neurotoxic anatoxin-a can also exert immunotoxicity by the induction of apoptosis on Carassius auratus lymphocytes in vitro when exposed to environmentally relevant concentrations[J]. Frontiers in Physiology, 2020, 11:316
    Mitrovic S M, Pflugmacher S, James K J, et al. Anatoxin-a elicits an increase in peroxidase and glutathione S-transferase activity in aquatic plants[J]. Aquatic Toxicology, 2004, 68(2):185-192
    Ha M H, Pflugmacher S. Phytotoxic effects of the cyanobacterial neurotoxin anatoxin-a:Morphological, physiological and biochemical responses in aquatic macrophyte, Ceratophyllum demersum[J]. Toxicon, 2013, 70:1-8
    Harada K I, Nagai H, Kimura Y, et al. Liquid chromatography/mass spectrometric detection of anatoxin-a, a neurotoxin from cyanobacteria[J]. Tetrahedron, 1993, 49(41):9251-9260
    Stevens D K, Krieger R I. Stability studies on the cyanobacterial nicotinic alkaloid anatoxin-a[J]. Toxicon, 1991, 29(2):167-179
    Kiviranta J, Sivonen K, Lahti K, et al. Production and biodegradation of cyanobacterial toxins-A laboratory study[J]. Archiv Für Hydrobiologie, 1991, 121(3):281-294
    Rapala J, Lahti K, Sivonen K, et al. Biodegradability and adsorption on lake sediments of cyanobacterial hepatotoxins and anatoxin-a[J]. Letters in Applied Microbiology, 1994, 19(6):423-428
    Klitzke S, Beusch C, Fastner J. Sorption of the cyanobacterial toxins cylindrospermopsin and anatoxin-a to sediments[J]. Water Research, 2011, 45(3):1338-1346
    Bouaïcha N, Corbel S. Cyanobacterial toxins emerging contaminants in soils:A review of sources, fate and impacts on ecosystems, plants and animal and human health[M]//Soil Contamination-Current Consequences and Further Solutions. InTech, 2016:105-126
    Toporowska M, Pawlik-Skowrońska B, Kalinowska R. Accumulation and effects of cyanobacterial microcystins and anatoxin-a on benthic larvae of Chironomus spp. (Diptera:Chironomidae)[J]. European Journal of Entomology, 2014, 111(1):83-90
    Osswald J, Rellán S, Gago A, et al. Uptake and depuration of anatoxin-a by the mussel Mytilus galloprovincialis (Lamarck, 1819) under laboratory conditions[J]. Chemosphere, 2008, 72(9):1235-1241
    Kaminski A, Bober B, Chrapusta E, et al. Phytoremediation of anatoxin-a by aquatic macrophyte Lemna trisulca L.[J]. Chemosphere, 2014, 112:305-310
    万翔, 薛庆举, 顾毓蓉, 等. 微囊藻毒素及其与其他环境污染物的联合毒性研究进展[J]. 生态毒理学报, 2021, 16(2):50-62

    Wan X, Xue Q J, Gu Y R, et al. Advance on combined toxicity of microcystins and other environmental pollutants[J]. Asian Journal of Ecotoxicology, 2021, 16(2):50-62(in Chinese)

    Chrapusta E, Węgrzyn M, Zabaglo K, et al. Microcystins and anatoxin-a in Arctic biocrust cyanobacterial communities[J]. Toxicon, 2015, 101:35-40
    Karosienċ J, Savadova-Ratkus K, Toruńska-Sitarz A, et al. First report of saxitoxins and anatoxin-a production by cyanobacteria from Lithuanian Lakes[J]. European Journal of Phycology, 2020, 55(3):327-338
    Taylor J. A review of:"Detection Methods for Cyanobacterial Toxins"[J]. Chemistry and Ecology, 1995, 11:4, 275-276
    Smutná M, Babica P, Jarque S, et al. Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystins[J]. Toxicon:Official Journal of the International Society on Toxinology, 2014, 79:11-18
    Pavagadhi S, Gong Z Y, Balasubramanian R. Toxicological implications of microcystins for zebrafish embryos in the presence of other environmental pollutants[J]. Environmental Toxicology and Chemistry, 2013, 32(7):1574-1581
    Lin W, Hou J, Guo H H, et al. The synergistic effects of waterborne microcystin-LR and nitrite on hepatic pathological damage, lipid peroxidation and antioxidant responses of male zebrafish[J]. Environmental Pollution, 2018, 235:197-206
    Wei H M, Wang S, Xu E G, et al. Synergistic toxicity of microcystin-LR and Cu to zebrafish (Danio rerio)[J]. The Science of the Total Environment, 2020, 713:136393
  • 加载中
计量
  • 文章访问数:  3222
  • HTML全文浏览数:  3222
  • PDF下载数:  119
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-14
罗丛强, 王素钦, 左俊, 罗玉双, 甘南琴. 鱼腥藻毒素的生态毒性研究及展望[J]. 生态毒理学报, 2022, 17(5): 217-225. doi: 10.7524/AJE.1673-5897.20211014002
引用本文: 罗丛强, 王素钦, 左俊, 罗玉双, 甘南琴. 鱼腥藻毒素的生态毒性研究及展望[J]. 生态毒理学报, 2022, 17(5): 217-225. doi: 10.7524/AJE.1673-5897.20211014002
Luo Congqiang, Wang Suqin, Zuo Jun, Luo Yushuang, Gan Nanqin. Research and Prospects of Eco-toxicity of Anatoxins[J]. Asian journal of ecotoxicology, 2022, 17(5): 217-225. doi: 10.7524/AJE.1673-5897.20211014002
Citation: Luo Congqiang, Wang Suqin, Zuo Jun, Luo Yushuang, Gan Nanqin. Research and Prospects of Eco-toxicity of Anatoxins[J]. Asian journal of ecotoxicology, 2022, 17(5): 217-225. doi: 10.7524/AJE.1673-5897.20211014002

鱼腥藻毒素的生态毒性研究及展望

    通讯作者: 王素钦, E-mail: suqinwanghn@outlook.com
    作者简介: 罗丛强(1988-),男,博士研究生,研究方向为水环境生态修复,E-mail:luocqhn@126.com
  • 1. 湖南文理学院, 环洞庭湖水产健康养殖及加工湖南省重点实验室, 常德市农业生物大分子研究中心, 微生物创新技术团队, 常德 415000;
  • 2. 中国科学院城市环境研究所, 福建省流域生态学重点实验室, 城市环境与健康重点实验室, 水生态健康研究组, 厦门 361021;
  • 3. 中国科学院水生生物研究所, 淡水生态与生物技术国家重点实验室, 武汉 430072
基金项目:

湖南省自然科学基金资助项目(2021JJ40379,2021JJ50135);常德市科技创新专项资金资助项目(2020G178,2020S006)

摘要: 在全球水体富营养化和气候变暖不断加剧的背景下,蓝藻水华及其产生的蓝藻毒素给人类健康和生态环境带来的不利影响不容忽视。鱼腥藻毒素(anatoxins,ATXs)是由鱼腥藻、束丝藻和颤藻等淡水丝状蓝藻产生的一类具有神经毒性的毒素,直接饮用ATXs污染的水体或间接暴露于其中均可导致接触动物发生急性中毒事件。本文根据现有研究结果,综述介绍了ATXs的致毒机理、在水体的分布、生态毒性效应以及环境归趋,并对相关研究领域进行展望,以期为未来有效防控ATXs的污染提供科学参考。

English Abstract

参考文献 (59)

返回顶部

目录

/

返回文章
返回