岩溶洞穴水δ13CDIC时空变化及影响因素分析——以贵州双河洞系麻黄支洞为例
Analysis of variation characteristics and influencing factors of δ13CDIC in cave water of Mahuang Cave, Suiyang, Guizhou
-
摘要: 为探究岩溶洞穴水溶解无机碳同位素(δ13CDIC)的变化特征、来源、影响因素及与主要水文地球化学指标间的相互关系.于2016年9月-2017年8月,逐月对贵州绥阳麻黄洞上覆土壤空气、不同类型洞穴水及对应洞穴空气环境指标进行野外监测、采样和室内实验,并运用数理统计分析方法对各监测指标进行分析.结果表明,时间上,不同类型洞穴水中δ13CDIC值均表现出旱季偏重,雨季偏轻的季节性变化特征;空间上,δ13CDIC值表现出地下暗河 > 洞穴滴水 > 裂隙水的特征.洞穴水δ13CDIC值与其主要水文地球化学指标中的水温、EC、Ca2+、HCO3-、SIc等呈显著负相关关系,与pH、Mg/Ca、Sr/Ca等呈显著正相关关系,但由于不同类型洞穴水在基岩裂隙或岩溶管道中运移路径、洞穴上覆地表植被覆盖、洞穴水是否充分脱气及二次溶蚀作用等因素影响,洞穴水点间δ13CDIC值与其主要水文地球化学指标间的相关性系数存在明显差异.洞穴水中δ13CDIC主要来源于洞穴上覆土壤和基岩裂隙或岩溶管道中,土壤CO2在诸多因素中占主导地位,不同类型洞穴水间存在明显差异.旱、雨季节土壤CO2浓度是影响洞穴水δ13CDIC值季节变化的重要因素,洞穴水δ13CDIC值的变化能够响应当地降雨量及地表温湿状况的变化.Abstract: The variation characteristics, sources, influencing factors of dissolved inorganic carbon isotopes (δ13CDIC) in karst cave water could have correlations with main hydrogeochemical indexes. To test the hypothesis, a series monitoring was carried out at the Mahuang Cave of Suiyang, Guizhou. Field monitoring, sampling and laboratory experiments were conducted on the overlying soil air, different types of cave water and corresponding cave air environmental indexes month by month, from September 2016 to August 2017. Then mathematical statistical analysis method was used to analyze the tendencies. It was indicated that the seasonal variation characteristics of δ13CDIC values in different types of cave waters were heavier in the dry season and lighter in the rainy season, while spatial variation performed with δ13CDIC (underground river) > δ13CDIC (cave dipping) > δ13CDIC (fissure water). Among major hydrogeochemical indicators, the cave water δ13CDIC values showed a significant negative correlation with water temperature, EC, Ca2+, HCO3- and SIc, while performed a significant positive correlation with pH, Mg-Ca ratio and Sr-Ca ratio. However, due to the influences of different types of cave water migration path in bedrock fissure or karst pipeline, overlying surface vegetation cover, sufficient degassing of cave water, secondary dissolution and other factors, the correlation coefficients of δ13CDIC values between cave water points and their main hydrogeochemical indicators were significantly different. Overlying soil and bedrock fissures or karst pipelines were the main sources of δ13CDIC in cave water. Soil CO2 played a dominant role among many factors, and there were significant differences among different types of cave water. Soil CO2 concentration in the dry and rainy season was an important factor affecting the seasonal variation of δ13CDIC value of cave water. The change of δ13CDIC value of cave water could respond to changes in local rainfall, surface temperature and humidity.
-
[1] DE CISNEROS C J, CABALLERO E. Carbon isotope values as paleoclimatic indicators. Study on stalagmite from Nerja Cave, South Spain[J]. Carbonates and Evaporites, 2011, 26(1):41-44. [2] 陈中笑, 赵琦. 全球碳循环研究中的δ13C方法及其进展[J]. 地球科学进展, 2011, 26(11):1225-1233. CHEN Z X, ZHAO Q. δ13C Methods and its progress in the study of global carbon cycle[J]. Advances in Earth Science, 2011, 26(11):1225-1233(in Chinese).
[3] 李红春, 袁道先. 北京石花洞石笋500年来的δ13C记录与古气候变化及大气CO2浓度变化的关系[J]. 中国岩溶, 1997, 16(4):285-295. LI H C, YUAN D X. Interannual-resolution on δ13C record of stalagmites as proxy for the changes in precipitation and atmospheric CO2 in ShiHua Cave, Beijing[J]. Carsologica Sinica, 1997, 16(4):285-295(in Chinese).
[4] GENTY D, BAKER A, MASSAULT M, et al. Dead carbon in stalagmites:Carbonate bedrock paleo-dissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems[J]. Geochimicaet Cosmochimica Acta, 2001, 65(20):3443-3457. [5] MANDIĆ M, MIHEVC A, LEIS A, et al. Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnskajama, Slovenia[J]. International Journal of Speleology, 2013, 42(3):279-289. [6] 张美良, 朱晓燕, 吴夏, 等. 洞穴次生化学碳酸盐沉积物-石笋的气候替代指标的意义与不确定性因素[J]. 地球与环境, 2015, 43(2):138-151. ZHANG M L, ZHU X Y, WU X, et al. Significance and uncertainty of speleothem-stalagmite proxies[J]. Earth and Environment, 2015, 43(2):138-151(in Chinese).
[7] 沈蔚, 王建力, 王家录, 等. 贵州纳朵洞洞穴水化学性质和δ13CDIC特征及其影响因素研究[J]. 中国岩溶, 2016(1):98-105. SHEN W, WANG J L, WANG J L, et al. Hydrochemistry and δ13 [8] 刘再华, 袁道先, 何师意, 等. 四川黄龙沟景区钙华的起源和形成机理研究[J]. 地球化学, 2003, 32(1):1-10. LIU Z H, YUAN D X, HE S Y, et al. Origin and forming mechanisms of tracertine at Huang Ravine of Sichuan[J]. Geochimica, 2003, 32(1):1-10(in Chinese).
[9] MILLO C, STRIKIS N M, VONHOF H B, et al. Last glacial and Holocene stable isotope record of fossil dripwater from subtropical Brazil based on analysis of fluid inclusions in stalagmites[J]. Chemical Geology, 2017, 468:84-96. [10] 彭玲莉, 李廷勇. 岩溶洞穴滴水环境监测研究进展[J]. 中国岩溶, 2012, 31(3):316-326. PEN L L, LI L Y. Research progress of monitoring for dripping water environment in karst caves[J]. Carsologica Sinica, 2012, 31(3):316-326(in Chinese).
[11] BAR-MATTHEWS M, AYALON A, KAUFMAN A, et al. The Eastern Mediterranean paleoclimate as a reflection of regional events:Soreq cave, Israel[J]. Earth and Planetary Science Letters, 1999,166(1/2):85-95. [12] SPÖTL C, FAIRCHILD I J, TOOTH A F. Cave air control on dripwater geochemistry, Obir Caves (Austria):implications forspeleothem deposition in dynamically ventilated caves[J].Geochimica et Cosmochimica Acta,2005, 69(10):2451-2468. [13] 李坡, 贺卫, 钱治, 等. 双河洞地质公园研究[M]. 贵阳:贵州人民出版社, 2008:58-101. LI P, HE W, QIAN Z, et al. Study on Shuanghe Cave geopark[M]. Guiyang:Guizhou People's Press, 2008:58 -101(in Chinese).
[14] 韦跃龙, 罗书文, 陈伟海, 等. 贵州绥阳地质公园白云岩喀斯特景观特征及其形成演化分析[J].地球学报, 2018, 39(3):365-383. WEI Y L, LUO W S, CHEN W H, et al. Characteristics and formation and evolution analysis of the dolomite karst landscape of suiyang geopark, Guizhou Provinces[J]. Acta Geoscientica Sinica, 2018, 39(3):365-383(in Chinese).
[15] 曹明达, 周忠发, 张结, 等. 白云岩洞穴系统中水-气CO2分压对洞穴水水文化学过程的影响:以贵州双河洞为例[J]. 环境科学与技术, 2017, 40(3):54-60. CAO M D, ZHOU Z F, ZHANG J, et al. Effects of partial pressure of CO2 of water/gas on hydrochemical process of cave water:A case study in dolomite cave system of Shuanghe cave in Guizhou Province[J]. Environmental Science & Technology, 2017, 40(3):54-60(in Chinese).
[16] 汪炎林, 周忠发, 田衷珲, 等. 池武溪流域岩溶水SO42-的空间变化特征及其来源分析[J]. 环境化学, 2017, 36(12):172-182. WANG Y L, ZHOU Z F, TIAN Z H, et al. Analysis of the spatial variation and sources of SO42- in karst water of Chiwu Revier[J]. Environmental Chemistry, 2017, 36(12):172-182(in Chinese).
[17] 康志强,何师意.表层岩溶系统碳迁移路径及其土被效应探讨[J].中国岩溶, 2011, 30(4):456-460. KANG Z Q, HE S Y. The regolith effect on carbon transfer path in epi-karst system[J]. Carsologica Sinica, 2011, 30(4):456-460(in Chinese).
[18] HESS J W, WHITE W B. Groundwater geochemistry of the carbonate karst aquifer, southcentral Kentucky, USA[J]. Appl Geochem, 1993, 8(2):189-204. [19] 蔡小薇, 赵景波. 西安长延堡夏季土壤CO2释放量的变化及影响因素[J].干旱区地理, 2005, 28(3):316-319. CAI X W, ZHAO J B. Change and the influence factors of the amount of CO2 released from Soil in Xi'an area, Shaanxi[J]. Arid Land Geography, 2005, 28(3):316-319(in Chinese).
[20] PU J, WANG A, YIN J, et al. PCO2 variations of cave air and cave water in a subtropical cave, SW China[J]. Carbonates and Evaporites, 2018, 33(3):477-487. [21] 张结, 周忠发, 汪炎林, 等. 短时间高强度旅游活动下洞穴CO2的变化特征及对滴水水文地球化学的响应[J]. 地理学报, 2018, 73(9):79-93. ZHANG J, ZHOU Z F, WANG Y L, et al. Variation of CO2 and its response to the drip hydrogeochemistry in caves under the short-time high-strength tourism activities[J]. Acta Geographica Sinica, 2018, 73(9):79-93(in Chinese).
[22] LANG M, FAIMON J, PRACNY P, et al. A show cave management:Anthropogenic CO2 in atmosphere of Výpustek Cave (Moravian Karst, Czech Republic)[J]. Journal for Nature Conservation, 2017, 35:40-52. [23] KRAJNC B, FERLAN M, OGRINC N. Soil CO2 sources above a subterranean cave-Pisani rov (Postojna Cave, Slovenia)[J]. Journal of Soils and Sediments, 2017, 17(7):1883-1892. [24] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望[J]. 地球科学进展, 2014, 29(12):1333-1340. LUO W J, WANG S J, LIU X M. Research progresses and prospect of chimney effect about carbon cycle in the Karst Cave System[J]. Advances in Earth Science, 2014,29(12):1333-1340(in Chinese).
[25] 童晓宁, 周厚云, 黄颖, 等. 广东英德宝晶宫CO2浓度的时空变化特征[J]. 热带地理, 2013, 33(4):439-443. TONG X N, ZHOU H Y, HUANG Y, et al. Spatio-temporal variation of air CO2 concentration in Baojinggong Cave, Guangdong, China[J]. Tropical Geography, 2013, 33(4):439-443(in Chinese).
[26] BREECKER D O, PAYNE A E, QUADE J, et al. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation[J]. Geochimica et Cosmochimica Acta, 2012, 96:230-246. [27] 殷超, 周忠发, 田衷珲,等. 土壤CO2与喀斯特洞穴CO2季节变化响应分析[J]. 水土保持学报, 2017, 31(4):304-310. YIN C, ZHOU Z F, TIAN Z H, et al. Seasonal response between soil and karst cave CO2 concentration[J]. Journal of Soil and Water Conservation, 2017, 31(4):304-310(in Chinese).
[28] 肖时珍, 蓝家程, 袁道先, 等. 贵州施秉白云岩喀斯特区水化学和溶解无机碳稳定同位素特征[J].环境科学, 2015, 36(6):2085-2093. XIAO S Z, NAN J C, YUAN D X, et al. Hydrochemistry and dissolved inorganic carbon stable isotope of Shibing dolomite karst area in Guizhou Province[J]. Environmental Science, 2015, 36(6):2085-2093(in Chinese).
[29] 李廷勇, 李红春, 向晓晶, 等. 碳同位素(δ13C)在重庆岩溶地区植被-土壤-基岩-洞穴系统运移特征研究[J]. 中国科学:地球科学, 2012, 42(4):526-535. LI T Y, LI H C, XIANG X J, et al. Transportation characteristics of δ13C in the plants-soil-bedrock-cave system in Chongqing karst area[J]. Sci China Earth Sci, 2012, 42(4):526-535(in Chinese).
[30] JOHNSON K R, HU C Y, BELSHAW N S, et al. Seasonal trace-element and stable-isotope variations in a Chinese speleothem:The potential for high-resolution paleomonsoon reconstruction[J]. Earth and Planetary Science Letters, 2006, 244(1/2):394-407. [31] 王世杰, 罗维均, 刘秀明, 等. 贵州七星洞系统中水文地球化学特征对滴水δ13CDIC的影响及其意义[J]. 地学前缘, 2009, 16(6):66-76. WANG S J, LUO W J, LIU X M, et al. Effects of hydrogeochemistry on δ13CDIC values of drip water in Qixing Cave, Guizhou[J]. Earth Science Frontiers, 2009, 16(6):66-76(in Chinese).
[32] 黄春霞, 李廷勇, 韩立银, 等. 重庆芙蓉洞洞穴水DIC-δ13C的变化特征及影响因素[J]. 中国岩溶, 2016, 35(3):299-306. HUANG C X, LI T Y, HAN L G, et al. Variations of cave water DIC-δ13C and its influencing factors in Furong cave, Chongqing[J]. Carsologica Sinica, 2016, 35(3):299-306(in Chinese).
[33] VERHEYDEN S, KEPPENS E, FAIRCHILD I J, et al. Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem:Implications for paleoclimate reconstructions[J]. Chemical Geology, 2000, 169(1/2):131-144. [34] 朱小龙, 罗维均, 王世杰. 贵州凉风洞洞穴系统锶同位素特征[J]. 地球化学, 2018, 47(2):209-216. ZHU X L, LUO W J, WANG S J. The characteristics of 87Sr/86Sr in the Liangfeng Cave system, Guizhou, China[J]. Geochimica, 2018, 47(2):209-216(in Chinese).
[35] 李廷勇, 李红春, 李俊云, 等. 重庆芙蓉洞洞穴沉积物δ13C, δ18O特征及意义[J]. 地质论评, 2008, 54(5):712-720. LI T Y, LI H C, LI J Y, et al. The δ13C and δ18O features and their significances of speleothems in Furong Cave, Chongqing, China[J]. Geological Review, 2008, 54(5):712-720(in Chinese).
[36] PEYRAUBE N, LASTENNET R, DENIS A, et al. Estimation of epikarst air PCO2 using measurements of water δ13CTDIC, cave air PCO2 and δ13CCO2[J]. Geochimica et Cosmochimica Acta, 2013, 118:1-17. [37] 任坤, 潘晓东, 曾洁, 等. 岩溶区不同土地利用下地下水碳同位素地球化学特征及生态意义[J]. 环境科学, 2019, 40(10):4523-4531. REN K, PAN X D, ZENG J, et al. Geochemical characteristics and ecological significance of carbon isotope in groundwater under different land use types in karst area[J]. Environmental Science, 2019, 40(10):4523-4531(in Chinese).
计量
- 文章访问数: 1779
- HTML全文浏览数: 1779
- PDF下载数: 26
- 施引文献: 0