粉煤灰砖块对磷酸盐的吸附特性

刘超, 杨永哲, 宛娜. 粉煤灰砖块对磷酸盐的吸附特性[J]. 环境工程学报, 2014, 8(5): 1711-1717.
引用本文: 刘超, 杨永哲, 宛娜. 粉煤灰砖块对磷酸盐的吸附特性[J]. 环境工程学报, 2014, 8(5): 1711-1717.
Liu Chao, Yang Yongzhe, Wan Na. Adsorptive characteristics of fly ash blocks to phosphate[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1711-1717.
Citation: Liu Chao, Yang Yongzhe, Wan Na. Adsorptive characteristics of fly ash blocks to phosphate[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1711-1717.

粉煤灰砖块对磷酸盐的吸附特性

  • 基金项目:

    国家“水体污染控制与治理”科技重大专项(2009ZX07212-002-004-003)

  • 中图分类号: X703

Adsorptive characteristics of fly ash blocks to phosphate

  • Fund Project:
  • 摘要: 以建筑废料粉煤灰砖块为吸附剂材料,通过静态吸附实验研究其对磷酸盐的吸附特征,以及磷酸盐初始浓度、吸附剂投加量、pH等因素对吸附反应的影响。Langmuir、Freundlich和Temkin等温模型的分析发现,Langmuir等温式方程最适合描述吸附过程,对磷酸盐的理论饱和吸附容量为44.62 mg/g。利用伪一级动力学模型、伪二级动力学模型和颗粒内扩散模型考察了吸附过程特征,其中伪二级动力学模型为最适于描述粉煤灰砖块对磷酸盐的吸附过程的动力学模型。通过颗粒内扩散模型、Bangham方程及Boyd模型对吸附动力学机理进行的探讨表明,颗粒内扩散速率不是粉煤灰砖块吸附磷酸盐反应的惟一速率控制步,膜扩散速率和颗粒内扩散速率共同影响着吸附反应速率。磷酸盐浓度较低时主要是膜扩散限制吸附反应速率,而磷酸盐浓度较高时则颗粒内扩散成为速率控制步。研究证明,粉煤灰砖块粉末作为湿地基质具有对磷酸盐很强的吸附能力,在减少了固体废弃物的数量的同时又可以实现水污染控制的目的。
  • 加载中
  • [1] Correll D.L. The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. Journal of Environmental Quality, 1998, 27(2): 261-266
    [2] Can M.Y., Yildiz E. Phosphate removal from water by fly ash: Factorial experimental design. Journal of Hazardous Materials, 2006, 135(1-3): 165-170
    [3] O'Luanaigh N.D., Goodhue R., Gill L.W. Nutrient removal from on-site domestic wastewater in horizontal subsurface flow reed beds in Ireland. Ecological Engineering, 2010, 36(10): 1266-1276
    [4] Vymazal J. Removal of nutrients in various types of constructed wetlands. Science of The Total Environment, 2007, 380(1-3): 48-65
    [5] Johansson Westholm L. Substrates for phosphorus removal—Potential benefits for on-site wastewater treatment? Water Research, 2006, 40(1): 23-36
    [6] Zhao Y.Q., Babatunde A.O., Hu Y.S., et al. Pilot field-scale demonstration of a novel alum sludge-based constructed wetland system for enhanced wastewater treatment. Process Biochemistry, 2011, 46(1): 278-283
    [7] Drizo A., Frost C.A., Smith K.A., et al. Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow, using shale as a substrate. Water Science and Technology, 1997, 35(5): 95-102
    [8] Xu D. F, Xu J. M., Wu J. J., et al. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. Chemosphere, 2006, 63(2): 344-352
    [9] Brooks A.S., Rozenwald M.N., Geohring L.D., et al. Phosphorus removal by wollastonite: A constructed wetland substrate. Ecological Engineering, 2000, 15(1-2): 121-132
    [10] Mateus D.M.R., Vaz M.M.N., Pinho H.J.O. Fragmented limestone wastes as a constructed wetland substrate for phosphorus removal. Ecological Engineering, 2012, 41: 65-69
    [11] Wood R.B., McAtamney C.F. Constructed wetlands for waste water treatment: the use of laterite in the bed medium in phosphorus and heavy metal removal. Hydrobiologia, 1996, 340(1-3):323-331
    [12] Vymazal J. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering, 2005, 25(5): 478-490
    [13] 刘超, 杨永哲, 宛娜. 新型人工湿地处理校园生活污水的运行特性. 中国给水排水, 2012, 28(17): 33-35 Liu C, Yang Y, Wan N. Research on the operational characteristics of a novel constructed wetlands treating domestic wastewater from a university campus. China Water & Wastewater, 2012, 28(17): 33-35 (in Chinese)
    [14] 姜应和, 柳君侠. 粉煤灰碎砖颗粒除磷实验研究. 环境工程学报, 2011, 5(7): 1532-1537 Jiang Y. H., Liu J. X. Experimental study on phosphorus removal by fly ash brickbat particle. Chinese Journal of Environmental Engineering, 2011, 5(7): 1532-1537 (in Chinese)
    [15] Srivastava V.C., Swamy M.M., Mall I.D., et al. Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 272(1-2): 89-104
    [16] Bulut Y., AydIn H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 2006, 194(1-3): 259-267
    [17] Grubb D.G., Guimaraes M.S., Valencia R. Phosphate immobilization using an acidic type F fly ash. Journal of Hazardous Materials, 2000, 76(2-3): 217-236
    [18] 张杰, 相会强, 张玉华, 等. 改性粉煤灰去除抗生素废水中的磷和色度. 中国给水排水, 2002, 18(10): 49-52
    [19] Lu S.G., Bai S.Q., Zhu L., et al. Removal mechanism of phosphate from aqueous solution by fly ash. Journal of Hazardous Materials, 2009, 161(1): 95-101
    [20] Chen J., Kong H., Wu D., et al. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition. Journal of Hazardous Materials, 2007, 139(2): 293-300
    [21] Raji C., Anirudhan T.S. Batch Cr(Ⅵ) removal by polyacrylamide-grafted sawdust: Kinetics and thermodynamics. Water Research, 1998, 32(12): 3772-3780
    [22] Kalavathy M.H., Karthikeyan T., Rajgopal S., et al. Kinetic and isotherm studies of Cu(Ⅱ) adsorption onto H3PO4-activated rubber wood sawdust. Journal of Colloid and Interface Science, 2005, 292(2): 354-362
    [23] Porter J.F., McKay G., Choy K.H. The prediction of sorption from a binary mixture of acidic dyes using single-and mixed-isotherm variants of the ideal adsorbed solute theory. Chemical Engineering Science, 1999, 54(24): 5863-5885
    [24] Allen S.J., McKay G., Porter J.F. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 2004, 280(2): 322-333
    [25] 刘霄, 黄岁樑, 刘学功. 3 种人工湿地基质对磷的吸附特性. 环境工程学报, 2012, 6(10): 3367-3372 Liu X., Huang S. L., Liu X. G. Characteristics of phosphorous adsorption on three substrates used in constructed wetland. Chinese Journal of Environmental Engineering, 2012, 6(10): 3367-3372 (in Chinese)
    [26] Ho Y.S., McKay G. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 1998, 70(2): 115-124
    [27] Wu F.C., Tseng R.L., Juang R.S. Comparisons of porous and adsorption properties of carbons activated by steam and KOH. Journal of Colloid and Interface Science, 2005, 283(1): 49-56
    [28] Horsfall M., Vicente J. Kinetic study of liquid-phase adsorptive removal of heavy metal ions by almond tree (Terminalia catappa L.) Leaves waste. Bulletin of the Chemical Society of Ethiopia, 2007, 21(3): 349-362
    [29] Aharoni C., Sideman S., Hoffer E. Adsorption of phosphate ions by collodion-coated alumina. Journal of Chemical Technology and Biotechnology, 1979, 29(7): 404-412
    [30] Tutem E., Unal C.F., Apak R. Adsorptive removal of chlorophenols from water by bituminous shale. Water Research, 1998, 32(8): 2315-2324
    [31] Reichenberg D. Properties of ion-exchange resins in relation to their structure. Ⅲ. Kinetics of exchange. Journal of the American Chemical Society, 1953, 75(3): 589-597
  • 加载中
计量
  • 文章访问数:  2064
  • HTML全文浏览数:  1126
  • PDF下载数:  816
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-05-29
  • 刊出日期:  2014-05-06
刘超, 杨永哲, 宛娜. 粉煤灰砖块对磷酸盐的吸附特性[J]. 环境工程学报, 2014, 8(5): 1711-1717.
引用本文: 刘超, 杨永哲, 宛娜. 粉煤灰砖块对磷酸盐的吸附特性[J]. 环境工程学报, 2014, 8(5): 1711-1717.
Liu Chao, Yang Yongzhe, Wan Na. Adsorptive characteristics of fly ash blocks to phosphate[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1711-1717.
Citation: Liu Chao, Yang Yongzhe, Wan Na. Adsorptive characteristics of fly ash blocks to phosphate[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1711-1717.

粉煤灰砖块对磷酸盐的吸附特性

  • 1. 西安建筑科技大学环境与市政工程学院, 西安 710055
  • 2. 济南市市政工程设计研究院(集团)有限责任公司, 济南 250101
基金项目:

国家“水体污染控制与治理”科技重大专项(2009ZX07212-002-004-003)

摘要: 以建筑废料粉煤灰砖块为吸附剂材料,通过静态吸附实验研究其对磷酸盐的吸附特征,以及磷酸盐初始浓度、吸附剂投加量、pH等因素对吸附反应的影响。Langmuir、Freundlich和Temkin等温模型的分析发现,Langmuir等温式方程最适合描述吸附过程,对磷酸盐的理论饱和吸附容量为44.62 mg/g。利用伪一级动力学模型、伪二级动力学模型和颗粒内扩散模型考察了吸附过程特征,其中伪二级动力学模型为最适于描述粉煤灰砖块对磷酸盐的吸附过程的动力学模型。通过颗粒内扩散模型、Bangham方程及Boyd模型对吸附动力学机理进行的探讨表明,颗粒内扩散速率不是粉煤灰砖块吸附磷酸盐反应的惟一速率控制步,膜扩散速率和颗粒内扩散速率共同影响着吸附反应速率。磷酸盐浓度较低时主要是膜扩散限制吸附反应速率,而磷酸盐浓度较高时则颗粒内扩散成为速率控制步。研究证明,粉煤灰砖块粉末作为湿地基质具有对磷酸盐很强的吸附能力,在减少了固体废弃物的数量的同时又可以实现水污染控制的目的。

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回