铅、镉污染废水树皮类吸附材料的筛选

刘栖萍, 王贵胤, 张世熔, 王新月, 冯灿. 铅、镉污染废水树皮类吸附材料的筛选[J]. 环境化学, 2020, (4): 1105-1115. doi: 10.7524/j.issn.0254-6108.2019110501
引用本文: 刘栖萍, 王贵胤, 张世熔, 王新月, 冯灿. 铅、镉污染废水树皮类吸附材料的筛选[J]. 环境化学, 2020, (4): 1105-1115. doi: 10.7524/j.issn.0254-6108.2019110501
LIU Xiping, WANG Guiyin, ZHANG Shirong, WANG Xinyue, FENG Can. Screening of bark adsorbents for Pb and Cd removal from polluted wastewater[J]. Environmental Chemistry, 2020, (4): 1105-1115. doi: 10.7524/j.issn.0254-6108.2019110501
Citation: LIU Xiping, WANG Guiyin, ZHANG Shirong, WANG Xinyue, FENG Can. Screening of bark adsorbents for Pb and Cd removal from polluted wastewater[J]. Environmental Chemistry, 2020, (4): 1105-1115. doi: 10.7524/j.issn.0254-6108.2019110501

铅、镉污染废水树皮类吸附材料的筛选

    通讯作者: 王贵胤, E-mail: wangguiyin@sicau.edu.cn
  • 基金项目:

    四川省重点研发项目(2019YFN0020)和四川省环境保护科技项目计划(2018HB30)资助.

Screening of bark adsorbents for Pb and Cd removal from polluted wastewater

    Corresponding author: WANG Guiyin, wangguiyin@sicau.edu.cn
  • Fund Project: Supported by the Key Research and Development Program of Sichuan Province, China(2019YFN0020)and the Science and Technology Project for Sichuan Environmental Protection(2018HB30).
  • 摘要: 近年来,水体重金属污染日趋严重,筛选出绿色高效处理重金属污染废水的吸附材料迫在眉睫.本文采用振荡吸附法研究了10种树皮类生物质吸附材料在不同投加量、初始浓度、pH和吸附时间下对模拟污染废水中Pb2+和Cd2+的吸附效率.结果表明,在25 ℃和180 r·min-1恒温振荡条件下,10种树皮对Pb2+和Cd2+的吸附效率存在明显差异(P<0.05).它们对模拟废水Pb2+和Cd2+的吸附量和吸附率,分别随初始浓度的增加呈递增和递减趋势;在0—120 min内随吸附时间的延长而提高;在pH 2.0—4.0范围内,随pH的增大而明显提升.红外光谱分析表明,羟基和羧基参与了Pb2+和Cd2+吸附.在投加量0.5 g·L-1、模拟废水初始浓度50 mg·g-1、pH 5.50和吸附时间120 min条件下,侧柏(Platycladus orientalis)皮、核桃树(Juglans regia)皮和构树(Broussonetia papyrifera)皮对Pb2+的吸附量可达71.77—83.61 mg·g-1,对Cd2+的吸附量达到64.69—70.33 mg·g-1,对实际污染废水具有较高的吸附率,最高可达98.21%.因此,侧柏皮、核桃树皮和构树皮可能是是吸附复合污染废水中铅镉的潜在材料.
  • 加载中
  • [1] 张弦,王宇晖,赵晓祥,等.微电场人工湿地系统对水中重金属Cd Zn和Cu去除效率的研究[J].农业环境科学学报, 2018, 37(6):1211-1218.

    ZHANG X, WANG Y H, ZHAO X X, et al. The removal effect of Cd, Zn, and Cu using a micro-electric field constructed wetland system[J]. Journal of Agro-Environment Science, 2018, 37(6):1211-1218(in Chinese).

    [2] KOBIELSKA P A, HOWARTH A J, FARHAB O K, et al. Metal-organic frameworks for heavy metal removal from water[J]. Coordination Chemistry Reviews, 2018, 358:92-107.
    [3] PENG W J, LI H Q, LIU Y Y, et al. A review on heavy metal ions adsorption from water by graphene oxide and its composites[J]. Journal of Molecular Liquids, 2017, 230:496-504.
    [4] ALI R M, HAMAD H A, HUSSEIN M M, et al. Potential of using green adsorbent of heavy metal removal from aqueous solutions:Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis[J]. Ecological Engineering, 2016, 91:317-332.
    [5] 刘金燕,刘立华,薛建荣,等.重金属废水吸附处理的研究进展[J].环境化学, 2018, 37(9):2016-2024.

    LIU J Y, LIU L H, XUE J R, et al. Research progress on treatment of heavy metal wastewater by adsorption[J]. Environmental Chemistry, 2018, 37(9):2016-2024(in Chinese).

    [6] GUIZA S. Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel[J]. Ecological Engineering, 2017, 99:134-140.
    [7] 牛晓丛,何益,金晓丹,等.酵素渣和秸秆生物炭钝化修复重金属污染土壤[J].环境工程, 2018, 36(10):118-123.

    NIU X C, HE Y, JIN X D, et al. Remediation effect of garbage enzyme and rice straw biochar on heavy metals contaminated soil[J]. Environmental Engineering, 2018, 36(10):118-123(in Chinese).

    [8] 陈再明,方远,徐义亮,等.水稻秸秆生物碳对重金属Pb2+的吸附作用及影响因素[J].环境科学学报, 2012, 32(4):769-776.

    CHEN Z M, FANG Y, XU Y L, et al. Adsorption of Pb2+ by rice straw derived-biochar and its influential factors[J]. Acta Scientiae Circumstantiae, 2012, 32(4):769-776(in Chinese).

    [9] 吴文卫,周丹丹.生物炭老化及其对重金属吸附的影响机制[J].农业环境科学学报, 2019, 38(1):7-13.

    WU W W, ZHOU D D. Influence of biochar aging on its physicochemical properties and adsorption of heavy metals[J]. Journal of Agro-Environment Science, 2019, 38(1):7-13(in Chinese).

    [10] 陈坦,周泽宇,孟瑞红,等.改性污泥基生物炭的性质与重金属吸附效率[J].环境科学, 2019, 40(4):1842-1848.

    CHEN T, ZHOU Z Y, MENG R H, et al. Characteristics and heavy metal adsorption performance of sewage sludge derived biochar from Co-pyrolysis with transition metals[J]. Environmental Science, 2019, 40(4):1842-1848(in Chinese).

    [11] ŞEN A, PEREIRA H, OLIVELLA M A, et al. Heavy metals removal in aqueous environments using bark as a biosorbent[J]. International Journal of Environmental Science and Technology, 2015, 12(1):391-404.
    [12] HAMDAOUI O. Adsorption of Cu (Ⅱ) from aqueous phase by Cedar bark[J]. Journal of Dispersion Science and Technology, 2016, 38(8):1087-1091.
    [13] 张纯,张伟,汪彩文.磷酸活化-微波热解改性污泥对镉的吸附性能[J].环境工程学报, 2014, 8(8):3299-3303.

    ZHANG C, ZHANG W, WANG C W. Adsorption of modified municipal sludge with phosphoric acid activation and microwave pyrolysis on Cd2+ ions[J]. Chinese Journal of Environmental Engineering, 2014, 8(8):3299-3303(in Chinese).

    [14] 谢厦,罗文文,王农,等.蒙脱土-稻壳炭复合材料对Pb (Ⅱ)吸附特性研究[J].农业环境科学学报, 2018, 37(11):2578-2585.

    XIE S, LUO W W, WANG N, et al. Study of adsorption characteristics of Pb2+ on montmorillonite-rice husk bio-charcoal composites[J]. Journal of Agro-Environment Science, 2018, 37(11):2578-2585(in Chinese).

    [15] LEI Q, LI H F, CHANG L, et al. Amination/oxidization dual-modification of waste ginkgo shells as bio-adsorbents for copper ion removal[J]. Journal of Cleaner Production, 2019, 228:112-123.
    [16] 陈锋,张谋,朱颖,等.硼掺杂微介孔碳球对镉的吸附特性及机理[J].生态环境学报, 2019, 28(6):1193-1200.

    CHEN F, ZHANG M, ZHU Y, et al. Adsorption characteristics and mechanism of cadmium by boron-doped micro-mesoporous carbon spheres[J]. Ecology and Environmental Sciences, 28(6):1193-1200(in Chinese).

    [17] 肖芳芳,张莹莹,程建华,等.壳聚糖/磁性生物碳对重金属Cu (Ⅱ)的吸附性能[J].环境工程学报, 2019, 13(5):1048-1055.

    XIAO F F, ZHANG Y Y, CHENG J H, et al. Adsorption properties of chitosan/magnetic biochar for Cu (Ⅱ) removal from solution[J]. Chinese Journal of Environmental Engineering, 2019, 13(5):1048-1055(in Chinese).

    [18] 陆中桂,黄占斌,李昂,等.腐植酸对重金属铅镉的吸附特征[J].环境科学学报, 2018, 38(9):3721-3729.

    LU Z G, HUANG Z B, LI A, et al. The adsorption behavior of lead and cadmium by humic acid[J]. Acta Scientiae Circumstantiae, 2018, 38(9):3721-3729(in Chinese).

    [19] 汤嘉雯,陈金焕,王凯男,等.加拿大一枝黄花生物炭Cd2+的吸附特性及机理[J].农业环境科学学报, 2019, 38(6):1339-1348.

    TANG J W, CHEN J H, WANG K N, et al. Characteristics and mechanism of cadmium adsorption by Solidago canadensis-derived biochar[J]. Journal of Agro-Environment Science, 2019, 38(6):1339-1348(in Chinese).

    [20] 任春燕,郭堤,刘翔宇,等.猕猴桃木生物质炭对溶液中Cd2+、Pb2+的吸附及应用研究[J].农业环境科学学报, 2019, 38(8):1982-1990.

    REN C Y, GUO D, LIU X Y, et al. Application of biochar derived from kiwi pruning branches for Cd2+ and Pb2+ adsorption in aqueous solutions[J]. Journal of Agro-Environment Science, 2019, 38,(8):1982-1990(in Chinese).

    [21] 张晓蕾,陈静,韩京龙,等.壳-核结构Fe3O4/MnO2磁性吸附材料的制备、表征及铅吸附去除研究[J].环境科学学报, 2013, 33(10):2730-2736.

    ZHANG X L, CHEN J, HAN J L, et al. Preparation and evaluation of shell-core structured Fe3O4/MnO2 magnetic adsorbent for Pb (Ⅱ) removal from aqueous solutions[J]. Acta Scientiae Circumstantiae, 33(10):2730-2736(in Chinese).

    [22] 祝春水,董娴,韩茜.硅藻土负载无定形磷酸氢锡吸附Pb (Ⅱ)、Cu (Ⅱ)和Zn (Ⅱ)研究[J].安全与环境学报, 2015, 15(2):189-195.

    ZHU C S, DONG X, HAN Q. On the removing efficiency of Pb (Ⅱ), Cu (Ⅱ) and Zn (Ⅱ) with the amorphous tin (Ⅳ) hydrogen phosphate supported on diatomite[J]. Journal of Safety and Environment, 2015, 15(2):189-195(in Chinese).

    [23] 吴成,张晓丽,李关宾.黑碳吸附汞砷铅镉离子的研究[J].农业环境科学学报, 2007, 26(2):770-774.

    WU C, ZHANG X L, LI G B. Sorption of Hg2+, As3+, Pb2+ and Cd2+ by black carbon[J]. Journal of Agro-Environment Science, 2007, 26(2):770-774(in Chinese).

    [24] 朱丽珺,张金池,俞元春,等.胡敏酸吸附重金属Cu2+、Pb2+、Cd2+的特征及影响因素[J].农业环境科学学报, 2008, 27(6):2240-2245.

    ZHU L J, ZHANG J C, YU Y Y, et al. Characteristics and affecting factors of humic acid adsorbing heavy metals Cu2+, Pb2+ and Cd2+[J]. Journal of Agro-Environment Science, 2008, 27(6):2240-2245(in Chinese).

    [25] ZHOU L, LIU Y G, LIU S B, et al. Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures[J]. Bioresource Technology, 2016, 218:351-359.
    [26] PAKULA M, WALCZYK M, BINIAK S, et al. Electrochemical and FTIR studies of the mutual influence of lead (Ⅱ) or iron (Ⅲ) and phenol on their adsorption from aqueous acid solution by modified activated carbons[J]. Chemosphere, 2007, 69(2):209-219.
    [27] LI R, LIANG W, WANG J J, et al. Facilitative capture of As (Ⅴ), Pb (Ⅱ) and methylene blue from aqueous solutions with MgO hybrid sponge like carbonaceous composite derived from sugarcane leafy trash[J]. Journal of Environmental Management, 2018, 212:77-87.
    [28] NADEEM R, MANZOOR Q, IQBAL M, et al. Biosorption of Pb (Ⅱ) onto immobilized and native Mangifera indica waste biomass[J]. Journal of Industrial and Engineering Chemistry, 2016, 35:185-194.
    [29] ALHOGBI B.G. Potential of coffee husk biomass waste for the adsorption of Pb (Ⅱ) ion from aqueous solutions[J]. Sustainable Chemistry and Pharmacy, 2017, 6:21-25.
    [30] CAO Y Y, XIAO W H, SHEN G H, et al. Carbonization and ball milling on the enhancement of Pb (Ⅱ) adsorption by wheat straw:competitive effects of ion exchange and precipitation[J]. Bioresource Technology, 2019, 273:70-76.
    [31] 邓潇,周航,陈珊,等.改性玉米秸秆炭和花生壳炭对溶液中Cd2+的吸附[J].环境工程学报, 2016, 10(11):6325-6331.

    DENG X, ZHOU H, CHEN S, et al. Adsorption of Cd2+ from aqueous solution by modified corn straw biochar and peanut shell biochar[J]. Chinese Journal of Environmental Engineering, 2016, 10(11):6325-6331(in Chinese).

    [32] 苏鹃,伍钧,杨刚,等.改性白果壳对水溶液中重金属镉的吸附研究[J].农业环境科学学报, 2014, 33(6):1218-1225.

    SU J, WU J, YANG G, et al. Adsorption of Cd2+ from solution by modified ginkgo shell powder[J]. Journal of Agro-Environment Science, 2014, 33(6):12118-1225(in Chinese).

    [33] 李丹阳,杨蕊嘉,罗海艳,等.十六烷基三甲基溴化铵改性生物炭对水中镉离子吸附性能的影响[J].环境工程学报, 2019, 13(8):1809-1821.

    LI D Y, YANG R J, LUO H Y, et al. Effect of adsorption of cadmium from aqueous solution by hexadecyl trimethyl ammonium bromide modified biochar[J]. Chinese Journal of Environmental Engineering, 2019, 13(8):1809-1821(in Chinese).

    [34] 刘文霞,李佳昕,王俊丽,等.改性泡桐树叶吸附剂对水中铅和镉的吸附特性[J].农业环境科学学报, 2014, 33(6):1226-1232.

    LIU W X, LI J X, WANG J L, et al. Adsorption characteristics of Pb2+ and Cd2+ by modified paulownia leaf powder from aqueous solution[J]. Journal of Agro-Environment Science, 2014, 33(6):1226-1232(in Chinese).

  • 加载中
计量
  • 文章访问数:  1736
  • HTML全文浏览数:  1736
  • PDF下载数:  43
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-05

铅、镉污染废水树皮类吸附材料的筛选

    通讯作者: 王贵胤, E-mail: wangguiyin@sicau.edu.cn
  • 1. 四川农业大学环境学院, 成都, 611130;
  • 2. 四川省土壤环境保护重点实验室, 成都, 611130
基金项目:

四川省重点研发项目(2019YFN0020)和四川省环境保护科技项目计划(2018HB30)资助.

摘要: 近年来,水体重金属污染日趋严重,筛选出绿色高效处理重金属污染废水的吸附材料迫在眉睫.本文采用振荡吸附法研究了10种树皮类生物质吸附材料在不同投加量、初始浓度、pH和吸附时间下对模拟污染废水中Pb2+和Cd2+的吸附效率.结果表明,在25 ℃和180 r·min-1恒温振荡条件下,10种树皮对Pb2+和Cd2+的吸附效率存在明显差异(P<0.05).它们对模拟废水Pb2+和Cd2+的吸附量和吸附率,分别随初始浓度的增加呈递增和递减趋势;在0—120 min内随吸附时间的延长而提高;在pH 2.0—4.0范围内,随pH的增大而明显提升.红外光谱分析表明,羟基和羧基参与了Pb2+和Cd2+吸附.在投加量0.5 g·L-1、模拟废水初始浓度50 mg·g-1、pH 5.50和吸附时间120 min条件下,侧柏(Platycladus orientalis)皮、核桃树(Juglans regia)皮和构树(Broussonetia papyrifera)皮对Pb2+的吸附量可达71.77—83.61 mg·g-1,对Cd2+的吸附量达到64.69—70.33 mg·g-1,对实际污染废水具有较高的吸附率,最高可达98.21%.因此,侧柏皮、核桃树皮和构树皮可能是是吸附复合污染废水中铅镉的潜在材料.

English Abstract

参考文献 (34)

目录

/

返回文章
返回