不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能

黄菲, 闫梦, 常建宁, 程红艳, 张海波, 王効挙, 曹艳篆, 张国胜, 何小芳, 苏龙. 不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能[J]. 环境化学, 2020, (4): 1116-1128. doi: 10.7524/j.issn.0254-6108.2019091604
引用本文: 黄菲, 闫梦, 常建宁, 程红艳, 张海波, 王効挙, 曹艳篆, 张国胜, 何小芳, 苏龙. 不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能[J]. 环境化学, 2020, (4): 1116-1128. doi: 10.7524/j.issn.0254-6108.2019091604
HUANG Fei, YAN Meng, CHANG Jianning, CHENG Hongyan, ZHANG Haibo, OH Kokyo, CAO Yanzhuan, ZHANG Guosheng, HE Xiaofang, SU Long. Adsorption performance of Cu2+ and Cd2+ in water by different biochars derived from spent mushroom substrate[J]. Environmental Chemistry, 2020, (4): 1116-1128. doi: 10.7524/j.issn.0254-6108.2019091604
Citation: HUANG Fei, YAN Meng, CHANG Jianning, CHENG Hongyan, ZHANG Haibo, OH Kokyo, CAO Yanzhuan, ZHANG Guosheng, HE Xiaofang, SU Long. Adsorption performance of Cu2+ and Cd2+ in water by different biochars derived from spent mushroom substrate[J]. Environmental Chemistry, 2020, (4): 1116-1128. doi: 10.7524/j.issn.0254-6108.2019091604

不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能

    通讯作者: 程红艳, E-mail: ndchenghy@163.com
  • 基金项目:

    山西省自然科学基金(201901D111216),山西省国际科技合作项目(201703D421002),山西省煤基重大科技攻关项目(FT2014-03),山西省重点研发(201603D211105),日本学术振兴会科学研究费辅助金(16H05633)和山西省黄土高原食用菌提质增效协同创新中心平台资助.

Adsorption performance of Cu2+ and Cd2+ in water by different biochars derived from spent mushroom substrate

    Corresponding author: CHENG Hongyan, ndchenghy@163.com
  • Fund Project: Supported by Natural Science Foundation of Shanxi Province (201901D111216),Shanxi International Science and Technology Cooperation Project (201703D421002), Major Coal-Based Science and Technology Projects in Shanxi Province (FT2014-03), Shanxi Province Key Research and Development (201603D211105),Japan Academic Advocacy Association (16H05633) and Collaborative Innovation Center Platform for Improving Quality and Efficiency of Edible Fungi in Loess Plateau of Shanxi Province.
  • 摘要: 以菌糠废弃物为原料,采用限氧裂解法在500 ℃条件下制备香菇菌糠、猴头菇菌糠和平菇菌糠生物炭(LEBC、HEBC和POBC).利用SEM、XRD 和 FTIR等方法对吸附剂进行了表征;通过吸附动力学、等温吸附、生物炭酸化实验探究了3种菌糠生物炭去除水溶液中Cu2+、Cd2+的效果及机理.结果表明,在溶液初始pH 2—3时,3种菌糠生物炭对溶液中Cu2+、Cd2+的吸附量急剧增加.LEBC、HEBC、POBC对Cu2+、Cd2+的吸附符合准二级动力学模型,对Cu2+的吸附速率分别为10.15×10-3、7.08×10-3、0.69×10-3 mg·g-1·min-1,对Cd2+的吸附速率分别为6.53×10-3、5.19×10-3、0.26×10-3 mg·g-1·min-1.不同浓度下LEBC、HEBC、POBC对Cu2+的吸附符合Langmuir模型,最大吸附量依次为56.74、11.98、77.32 mg·g-1;而Cd2+的吸附符合Freundlich模型,最大吸附量依次为74.26、36.49、70.2 mg·g-1.LEBC在较短的时间内能达到较大的吸附量,可作为去除水体中Cu2+、Cd2+的优质吸附剂.XRD和FTIR等分析结果表明生物炭对Cu2+、Cd2+的吸附机制包括物理吸附、阳离子-π作用、官能团络合及沉淀.3种生物炭经酸化处理后,对Cu2+、Cd2+的吸附能力显著下降,表明生物炭中碳酸盐引起的Cu2+、Cd2+表面沉淀在吸附过程中起重要作用.
  • 加载中
  • [1] 藏婷婷, 胡晓婧, 顾海东,等. 黑木耳菌糠对Cu2+的生物吸附及其机理[J]. 环境科学学报, 2014, 34(6):1421-1428.

    ZANG T T, HU X Q, GU H D, et al. Biosorption of Cu2+ by Auricularia auricula spent substrate and its mechanism[J].Acta Scientiae Circumstantiae, 2014, 34(6):1421-1428(in Chinese).

    [2] TAN X F, LIU Y G, GU Y L, et al. Immobilization of Cd(Ⅱ) in acid soil amended with different biochars with a long term of incubation[J]. Environmental Science & Pollution Research, 2015, 22(16):12597-12604.
    [3] ZHU Q H, WU J, WANG L L, et al. Adsorption characteristics of Pb2+onto wine lees-derived biochar[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 97(2):294-299.
    [4] Al-WABEL M I, Al-OMRAN A, El-NAGGAR A H, et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J]. Bioresource Technology, 2013, 131(3):374-379.
    [5] XU X Y, CAO X D, ZHAO L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science & Pollution Research, 2013, 20(1):358-368.
    [6] 李瑞月, 陈德, 李恋卿, 等. 不同作物秸秆生物炭对溶液中Pb2+、Cd2+的吸附[J]. 农业环境科学学报, 2015,34(5):1001-1008.

    LI R Y, CHEN D, LI L Q, et al. Adsorption of Pb2+ and Cd2+ in aqueous solution by biochars derived from different crop residues[J].Journal of Agro-Environment Science, 2015,34(5):1001-1008(in Chinese).

    [7] AHMAD M, LEE S S, DOU X, et al. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water.[J]. Bioresource Technology, 2012, 118:536-544.
    [8] 陈再明, 方远, 徐义亮, 等. 水稻秸秆生物炭对重金属Pb2+的吸附作用及影响因素[J]. 环境科学学报, 2012, 32(4):769-776.

    CHEN Z M, FANG Y, XU Y L, et al. Adsorption of Pb2+ by rice straw derived-biochar and its influential factors[J]. Acta Scientiae Circumstantiae, 2012, 32(4):769-776(in Chinese).

    [9] 郑凯琪, 王俊超, 刘姝彤, 等.不同热解温度污泥生物炭对Pb2+、Cd2+的吸附特性[J]. 环境工程学报, 2016, 10(12):7277-7282.

    ZHENG K Q, WANG J C, LIU S T, et al. Adsorption characteristic of Pb2+ and Cd2+ with sludge biochars derived at different pyrolysis temperatures[J].Chinese Journal of Environmental Engineering, 2016, 10(12):7277-7282(in Chinese).

    [10] BLANES P S, BORDONI M E, GONZALEZ J C, et al. Application of soy hull biomass in removal of Cr(Ⅵ) from contaminated waters. Kinetic, thermodynamic and continuous sorption studies[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):516-526.
    [11] 卫智涛, 周国英, 胡清秀. 食用菌菌渣利用研究现状[J]. 中国食用菌, 2010, 29(5):3-6

    WEI Z T, ZHOU G Y, HU Q X, et al. Research and utilization of edible fungi residue[J].Edible Fungi of China, 2010, 29(5):3-6(in Chinese).

    [12] 袁志辉, 刘小文, 李常健,等. 菌糠酶及其对环境污染物修复功能的研究进展[J]. 食用菌学报, 2016, 23(2):110-118.

    YUAN Z H, LIU X W, LI C J, et al. Research progress on spent mushroom substrate enzymes and their application in the biodegradation of environmental pollutants[J].Acta Edulis Fungi, 2016, 23(2):110-118(in Chinese).

    [13] 肖燕萍, 宋新山, 赵志淼,等. 海藻酸钠/蒙脱石联合负载型纳米Fe0对Cu(Ⅱ)的去除研究[J]. 环境科学学报, 2017, 37(1):227-233.

    XIAO Y P, SONG X S, ZHAO Z M, et al. Removal of Cu(Ⅱ) using nanoscale zero-valent iron supported on sodium alginate and montmorillonite[J]. Acta Scientiae Circumstantiae, 2017, 37(1):227-233(in Chinese).

    [14] KOLODYNSKA D, WNETEZAK R, LEAHY J J, et al. Kinetic and adsorptive characterization of biochar in metal ions removal[J]. Chemical Engineering Journal, 2012, 197(29):295-305.
    [15] LIU P B, JIAO J, HUANG Y. Research development of ordered mesoporous carbon[J]. Carbon Techniques, 2012,31(2):21-27.
    [16]
    [17] 李力, 陆宇超, 刘娅, 等. 玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J]. 农业环境科学学报, 2012,31(11):2277-2283.

    LI L, LU Y C, LIU Y,et al. Adsorption mechanisms of cadmium(Ⅱ)on biochars derived from corn straw[J].Journal of Agro-Environment Science,2012,31(11):2277-2283(in Chinese).

    [18] 马锋锋, 赵保卫, 刁静茹. 小麦秸秆生物炭对水中Cd2+的吸附特性研究[J]. 中国环境科学,2017,37(2):551-559.

    MA F F, ZHAO B W, DIAO J R, Adsorptive characteristics of cadmium onto biochar produced from pyrolysis of wheat straw in aqueous solution[J].China Environment Science,2017,37(2):551-559(in Chinese).

    [19] KIM W K, SHIM T, KIM Y S, et al. Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures[J]. Bioresource Technology, 2013, 138(Complete):266-270.
    [20] 张连科, 刘心宇, 王维大, 等. 油料作物秸秆生物炭对水体中铅离子的吸附特性与机制[J]. 农业工程学报, 2018,34(7):218-226.

    ZHANG L K, LIU X Y, WANG W D, et al.Characteristics and mechanism of lead adsorption from aqueous solutions by oil crops straw-derived biochar[J].Transactions of the Chinese Society of Agricultural Engineering, 2018,34(7):218-226(in Chinese).

    [21] 郜礼阳, 邓金环, 唐国强,等. 不同温度桉树叶生物炭对Cd2+的吸附特性及机制[J]. 中国环境科学, 2018, 38(3):1001-1009.

    GAO L Y, DENG J H, TANG G Q,et al. Adsorption characteristics and Mechanism of Cd2+ on biochar with different pyrolysis temperatures produced from eucalyptus leaves[J].China Environment Science, 2018, 38(3):1001-1009(in Chinese).

    [22] ANTAL M J, GRONLI M. The art, science, and technology of charcoal production[J]. Industrial & Engineering Chemistry Research, 2003, 42(8):1619-1640.
    [23] HOSSAIN M K, SREZOV V, CHAN K Y, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environmental Management, 2011, 92(1):223-228.
    [24] XU X, SCHIERZ A, XU N, et al. Comparison of the characteristics and mechanisms of Hg(Ⅱ) sorption by biochars and activated carbon[J]. Journal of Colloid & Interface Science, 2015, 463:55-60.
    [25] SUN J, LIAN F, LIU Z, et al. Biochars derived from various crop straws:Characterization and Cd(Ⅱ) removal potential[J]. Ecotoxicology & Environmental Safety, 2014, 106(2):226-231.
    [26] JAMES G, SABATINI D A, CHIOU C T, et al. Evaluating phenanthrene sorption on various wood chars[J]. Water Research, 2005, 39(4):549-558.
    [27] WANG C, GU L, LIU X, et al. Sorption behavior of Cr(Ⅵ) on pineapple-peel-derived biochar and the influence of coexisting pyrene[J]. International Biodeterioration & Biodegradation, 2016, 111:78-84.
    [28] 计海洋, 汪玉瑛, 吕豪豪,等. 不同炭化温度制备的蚕丝被废弃物生物炭对重金属Cd2+的吸附性能[J]. 应用生态学报, 2018, 29(4):1328-1338.

    JI H Y, WANG Y Y, LV H H, et al.Cadmium adsorption by biochar prepared from pyrolysis of silk waste at different temperatures[J]. Chinese Journal of Applied Ecology, 2018, 29(4):1328-1338(in Chinese).

    [29] 徐义亮. 生物炭的制备热动力学特性及其对镉的吸附性能和机理[D]. 杭州:浙江大学, 2013. XU Y L, Thermodynamic properties of biochar preparation andsorption characteristics and mechanisms of cadmium onto biochars[D]. Hangzhou:Zhejiang University, 2013(in Chinese).
    [30] 李力, 陆宇超, 刘娅, 等.玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J]. 农业环境保护, 2012, 31(11):2277-2283

    LI L, LU Y C, LIU Y, et al. Adsorption mechanisms of cadmium(Ⅱ)on Biochars derived from corn straw[J].Journal of Agro-Environment Science, 2012, 31(11):2277-2283(in Chinese).

    [31] UCHIMIYA M, LIMA M, THOMAS K K, et al. Immobilization of heavy metal ions (Cu, Cd, Ni, and Pb) by broiler litter-derived biochars in water and soil[J]. Journal of Agricultral Food and Chemistry, 2010, 58(9):5538-5544.
    [32] CHEN B L, ZHOU D D, ZHU L Z, et al. Sorption characteristics and mechanisms of organic contaminant to carbonaceous biosorbents in aqueous solution[J]. Science China Chemistry, 2008, 51(5):464-472.
    [33] MOHAN D, PITTMAN C U, BRICKA M, et al. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production[J]. Journal of Colloid & Interface Science, 2007, 310(1):57-73.
    [34] LI M, LIU Q, GUO L, et al. Cu(Ⅱ) removal from aqueous solution by Spartina alterniflora derived biochar[J]. Bioresource Technology, 2013, 141:83-88.
    [35] ZHANG F, WANG X, YIN D, et al. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)[J]. Journal of Environmental Management, 2015, 153:68-73.
  • 加载中
计量
  • 文章访问数:  1747
  • HTML全文浏览数:  1747
  • PDF下载数:  67
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-16

不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能

    通讯作者: 程红艳, E-mail: ndchenghy@163.com
  • 1. 山西农业大学资源环境学院, 太谷, 030801;
  • 2. 山西农业大学城乡建设学院, 太谷, 030801;
  • 3. 日本埼玉环境科学国际中心, 埼玉, 347-0115, 日本
基金项目:

山西省自然科学基金(201901D111216),山西省国际科技合作项目(201703D421002),山西省煤基重大科技攻关项目(FT2014-03),山西省重点研发(201603D211105),日本学术振兴会科学研究费辅助金(16H05633)和山西省黄土高原食用菌提质增效协同创新中心平台资助.

摘要: 以菌糠废弃物为原料,采用限氧裂解法在500 ℃条件下制备香菇菌糠、猴头菇菌糠和平菇菌糠生物炭(LEBC、HEBC和POBC).利用SEM、XRD 和 FTIR等方法对吸附剂进行了表征;通过吸附动力学、等温吸附、生物炭酸化实验探究了3种菌糠生物炭去除水溶液中Cu2+、Cd2+的效果及机理.结果表明,在溶液初始pH 2—3时,3种菌糠生物炭对溶液中Cu2+、Cd2+的吸附量急剧增加.LEBC、HEBC、POBC对Cu2+、Cd2+的吸附符合准二级动力学模型,对Cu2+的吸附速率分别为10.15×10-3、7.08×10-3、0.69×10-3 mg·g-1·min-1,对Cd2+的吸附速率分别为6.53×10-3、5.19×10-3、0.26×10-3 mg·g-1·min-1.不同浓度下LEBC、HEBC、POBC对Cu2+的吸附符合Langmuir模型,最大吸附量依次为56.74、11.98、77.32 mg·g-1;而Cd2+的吸附符合Freundlich模型,最大吸附量依次为74.26、36.49、70.2 mg·g-1.LEBC在较短的时间内能达到较大的吸附量,可作为去除水体中Cu2+、Cd2+的优质吸附剂.XRD和FTIR等分析结果表明生物炭对Cu2+、Cd2+的吸附机制包括物理吸附、阳离子-π作用、官能团络合及沉淀.3种生物炭经酸化处理后,对Cu2+、Cd2+的吸附能力显著下降,表明生物炭中碳酸盐引起的Cu2+、Cd2+表面沉淀在吸附过程中起重要作用.

English Abstract

参考文献 (35)

目录

/

返回文章
返回