-
据报道,当前全球已登记和使用的化学品及其混合物已超过35万种[1]. 预计到2030年底,全球化学工业规模将翻一番[2],极大地加剧化学品释放、迁移、暴露的风险以及对健康和环境的不利影响,世界卫生组织保守估计仅2016年因化学品造成的疾病病例已高达160万[2]. 内分泌干扰物[3 − 4]、药物和个人护理品[5 − 6]、消毒副产物[7 − 8]等化学品[9 − 10]在环境介质中广泛存在. 污水处理厂作为人类生产生活与自然环境间的中转站[11],已成为全氟化合物[12 − 13]、短链氯化石蜡[14 − 15]及抗生素[16]等新污染物进入水生环境的重要途径,且诸多化学品在水体中的最高浓度通常出现在区域污水处理厂排污口及附近河段[17 − 19]. 污水处理厂的处理效率对污染物的环境暴露水平具有直接影响,因而相关过程被看作是化学品环境风险评估中的重要环节. 国内外相关环境管理机构基于化学品暴露评估的技术支撑需求,开发了大量与污水处理相关的预测工具. 最常见的包括加拿大多伦多大学开发的STP逸度模型[20]、欧盟推荐使用的SimpleTreat[21]及其拓展模型[22 − 23]、美国环保署提出的WATER9模型[24]以及商业机构维护的TOXCHEM[25]和WEST模型[26]等. 另一方面,诸多学者为解决污水处理技术难题也构建了基于质量守恒、相分配等原理的污水处理数值模型[27 − 29].
国内外污水处理厂化学品环境归趋模型种类丰富,应用对象与机理各异,具有各自的特色与优势,同时又可能存在不同程度的交叉[30 − 31]. 对其进行全面的梳理与整合,有利于研究者充分依据所需模拟化学品的特点针对性地选择模型工具,从而获得更加可靠与精准的预测结果. 然而目前为止,与化学品在污水处理厂阶段迁移归趋模拟相关的综述较少,大多研究集中于化学品在自然环境介质间的迁移过程[32 − 36]. 本文通过对近百篇污水处理厂中化学品环境归趋模拟文献进行分析,系统梳理了该研究领域常见的污水处理厂模型清单,并根据建模机理将其分为三大类:基于逸度原理的STP模型、基于质量浓度的SimpleTreat、WW-TREAT、WATER9、TOXCHEM和WEST模型等以及基于活度原理的Activity SimpleTreat模型等具有代表性的化学品归趋模型. 本文重点介绍了各种模型的结构、原理、特点和化学品归趋研究的实际应用情况,从表达形式、输入参数、输出结果以及适用性等方面概述其各自的优点和局限性,结合数百个模拟/监测数据集进一步验证各类模型的准确性,探讨其不确定性重要来源,并总结该领域的化学品环境归趋模型应用前景和发展趋势. 本研究力求对化学品在污水处理厂阶段的迁移转化及归趋过程进行全面解析,对目前有关污水处理厂内化学品环境归趋模拟研究现状及未来方向进行重点掌控,并为实际应用中的模型选择提供参考,助力国家新污染物治理战略.
污水处理厂化学品环境归趋模型研究现状及展望
Current situation and prospects of sewage treatment plant chemical environmental fate model research
-
摘要: 污水处理厂化学品环境归趋模型是化学品末端管控的重要工具. 当前针对污水处理厂中化学品迁移、转化和分布预测的模型开发及应用逐渐增加,但相关模型种类较多、适用性各具特点,尚缺乏污水处理厂化学品环境归趋模型的综合比较和应用清单报道. 本文汇总了目前已用于污水处理厂内化学品环境归趋模拟的模型与化学品适用清单,根据模型建模机理,将其分为三类:基于逸度原理(STP)、基于质量浓度(SimpleTreat、WW-TREAT、WATER9、TOXCHEM和WEST等)以及基于活度原理(Activity SimpleTreat)的污水处理厂化学品环境归趋模型. 本文系统性介绍了相关模型的基本结构、原理和不同场景下化学品归趋研究的应用情况,概述其在表达形式、输入参数、输出结果以及适用案例等方面的局限性和优点,结合数百个模拟/监测数据集进一步验证各类模型的准确性,并探讨其不确定性重要来源. 文章为目前污水处理厂化学品环境归趋模拟研究提供了更清晰的现状分析,为新污染物末端治理工具的选择提供了参考依据,并总结了该领域的发展趋势和前景.Abstract: The environmental fate model for chemical in sewage treatment plant is an important tool for end-of-pipe control of chemicals. Recently, there has been a gradual increase in the development and application of models designed to predict chemical migration, transformation and distribution in sewage treatment plants. However, given the variety of available models, each with its unique suitability and characteristics, a comprehensive review on their comparisons and applications is needed. This article provides an overview of the various models currently in use for simulating the environmental fate of chemicals in sewage treatment plants and the chemicals they are applied to. These models are categorized into three groups based on their internal mechanisms: fugacity-based models (STP), mass concentration-based models (SimpleTreat, WW-TREAT, WATER9, TOXCHEM and WEST), and activity-based models (Activity SimpleTreat). Each model is systematically explored in terms of its basic constructions, mechanisms, and applications on chemical fate simulation in different scenarios. Additionally, the article outlines the limitations and strengths of each model, considering factors such as expression forms, input parameters, output results and applicable cases. To further validate these models, the article compares extensive modeling data with monitoring data, identifying key sources of uncertainty in the process. This comprehensive analysis provides a clearer picture of the current state of simulation research on the environmental fate of chemicals in sewage treatment plants. The article aims to guide the selection of tools for end-of-pipe control of new pollutants and summarizes the development trends and prospects in this field.
-
Key words:
- chemicals /
- environmental fate /
- sewage treatment /
- models.
-
表 1 WATER9模型主要处置单元中排放途径及重要性a
Table 1. Emission pathways and importance in the main disposal units of the WATER9 model
主要排放途径分类
Main emission pathways
classification蓄水池/调节池
Reservoir/Regulating
reservoir生物反应池
Bioreactor tank垃圾填埋场
Landfill土地处理
Land treatment表面挥发 *** *** *** *** 吸附 * ** * * 生物降解 *** *** ** *** 光化学降解 ** * * * 水解 ** ** * * a:其余如氧化还原、迁移渗透和降雨侵蚀等途径受氧气通量、局部气候等影响较大,难以估算排放贡献,WATER9模型中不适用或已被忽略. ***:重要途径,**:次要途径,*:不适用或可忽略途径.
a: The remaining pathways such as oxidation reduction, transport infiltration and rainfall erosion are strongly influenced by oxygen flux, local climate, etc., and it is difficult to estimate the emission contribution, which is not applicable or has been ignored in WATER9 model.
***: significant pathway, **: minor pathway, *: inapplicable or negligible pathway.表 2 TOXCHEM模型中化学品去除机制速率系数
Table 2. Rate coefficients of chemical removal mechanisms in the TOXCHEM model
主要去除机制
Main removal mechanism速率表达式
Rate expression参数定义及来源
Definition and source of parameter生物降解过程 $ r_{\rm{b}}=k_{\rm{b}}\times X_{\rm{VSS}}\times C $ :生物降解去除率(μg·L−1·h−1),$ {{r}}_{\rm{b}} $ :生物降解速率系数(L·g−1·h−1),$ {{k}}_{\rm{b}} $ :悬浮颗粒物浓度(g·L−1),C:水相中化学品浓度(μg·L−1)$ {{X}}_{\rm{VSS}} $ 传质过程 表面挥发 ,$ r_{\rm{v}}=k_{\rm{v}}\times C $ $ {k}_{\rm{v}}{=}\dfrac{{K}_{\rm{L}}}{{h}} $ $ K_{\rm{L}}=\left(\dfrac{1}{k_{\rm{L}}}+\dfrac{1}{k_{\rm{G}}\times H}\right)^{-1} $ :表面挥发去除率(μg·L−1·h−1),$ {{r}}_{{v}} $ :挥发速率系数(h−1),$ {k}_{\rm{v}} $ :池深(m),$ {h} $ :液膜转移系数(m·h−1),$ {k}_{\rm{L} }$ :气膜转移系数(m·h−1),H:亨利系数(atm·m3·mol)$ {k}_{\rm{G}} $ 空气剥离 ,$ r_{\rm{st}}=k_{\rm{st}}\times C $ $ k_{\rm{st}}=K_{\rm{L}a} $ $ K_{\rm{L}a}=\dfrac{40\times H\times k_{L\rm{a}}}{40\times H+1} $ :空气剥离去除率(μg·L−1·h−1),$ {{r}}_{\rm{st}} $ :液膜转移系数(m·h−1),$ {k}_{\rm{L}} $ :汽提速率系数(h−1),H:亨利系数(atm·m3·mol)$ {k}_{\rm{st}} $ 初沉池堰 $ C_{\rm{i}}=C_{\rm{out}}\times e^{-A} $ $ A=0.042\times h_{\rm{p}}^{0.872}\times q_{\rm{p}}^{0.509}\times K_{\rm{L}}/K_{\rm{L}}^{\mathrm{oxy}} $ hp:初沉池堰跌落高度(m),qp:初沉池堰载率(m3·h−1·m),
KL:总传质系数(m·h−1), :氧转移系数(m·h−1)$ K_{\rm{L}}^{\mathrm{oxy}} $ 二沉池堰 $ C_i=C_{\rm{out}}\times e^{-B} $ $ B=0.077\times h_{\rm{s}}^{0.629}\times q_{\rm{s}}^{0.66}\times K_{\rm{L}}/K_{\rm{L}}^{\mathrm{oxy}} $ hp:二沉池堰跌落高度(m),qp:二沉池堰载率(m3·h−1·m) 吸附过程 ,$ q=K_{\rm{p}}\times C $ $ {{K}}'_{\rm{p}}{=}{1000}{K}_{\rm{p}} $ $ \mathrm{lg}K'_{\rm{p}}=0.58\mathrm{lg}K_{\rm{ow}}+1.14 $ q:吸附到固体上的化学品浓度(μg·g−1), :固液分配系数(L·g−1)$ {K}_{\rm{p}} $ 表 3 污水处理厂中化学品环境归趋模型比较及应用清单
Table 3. Comparison and application list of environmental fate models of chemicals in sewage treatment plants
模型名称
Model name类型和建模机理
Type and modeling mechanisms输入参数
Input parameter输出结果
Output已模拟化学品
Simulated
chemicals参考文献
ReferenceSTP 稳态
非箱体模型
质量守恒
逸度表达
Level ⅡKow、蒸汽压与水溶解度、进水浓度和生物降解速率等 化学品去除率(包括总去除、降解、吸附、挥发等过程) 芳香烃类:萘、蒽、芘、芴、菲、苯并[a]芘、二苯并噻吩、乙炔蒽、乙炔菲、甲苯、乙苯等(常用于染料)
卤代烃类:1,1,1-三氯乙烷、1,4-二氯苯、1,2-二氯乙烷、1,1-二氯乙烯、溴仿、氯仿、对二氯苯等
酚类:苯酚、五氯苯酚等
杀虫剂类:、林丹、2,4-二氯苯氧乙酸等
增塑剂类:邻苯二甲酸酯、双酚A等
有机磷阻燃剂:三(2-氯乙基)磷酸酯、三(氯异丙基)磷酸酯、三(正丁基)磷酸酯、甲基二苯基磷酸酯、三甲苯基磷酸酯等[20, 31, 44 − 46, 82, 92] SimpleTreat 稳态
箱体模型
质量守恒
浓度表达lgKoc或Kow、亨利常数(或蒸汽压与水溶解度)、环境排放速率、生物降解速率以及污水处理工艺参数等 化学品去除率(包括总去除、降解、吸附、挥发等过程)和各处置单元中化学品浓度分布 芳香烃类:萘、芴、菲、芴菲、芘、苯并[b]萘并[2,1-d]噻吩、苯并[a]蒽、三苯并芘、蒽并芘、苯、甲苯、乙苯、二甲苯等
麝香:AHTN、HHCB等(可用于个人护理品)
杀生剂:三氯卡班、三氯生等
药物:安定、氧安定、卡马西平、安非他酮、舍曲林、西酞普兰、阿替洛尔、普萘洛尔、多西环素、克拉霉素、红霉素等[21, 48, 93 − 94] WW-TREAT 稳态
非箱体模型
质量守恒
浓度表达溶解态化学品生物降解速率、吸附态化学品生物降解速率、水力停留时间、污泥停留时间、固液分配系数、悬浮固体浓度等 化学品去除率(包括初级处置和活性污泥处置)以及向空气、污泥和出水的排放分布 阴离子表面活性剂:亚氨基三乙酸(NTA)、线性烷基苯磺酸盐(LAS)、十二烷基三甲基氯化铵(C12TMAC)、二硬脂酰二甲基氯化铵(DTDMAC)等 [28] WATER9 稳态
非箱体模型
质量守恒
浓度表达污水流量、污水初始浓度、水面面积、水中化学品浓度、水相传质系数、气相传质系数、理想气体常数、温度、亨利系数、生物降解速率、最大反应速率常数、生物量、半饱和常数等 污水处理系统局部和整体产生的挥发性有机污染物向大气介质的排放速率和排放量 芳香烃类:萘、苯、甲苯、二甲苯、乙苯、氯苯、1,2-二氯苯、1,3-二氯苯、苯乙烯、对二乙基苯等
卤代烃类:三氯甲烷、四氯乙烯、三氯乙烯、1,2-二氯乙烷、1,1,1-三氯乙烷、1,2-二氯丙烷、顺式1,2-二氯丙烯等[61 − 62, 66] TOXCHEM 稳态/动态
非箱体模型
质量守恒
浓度表达污水初始浓度、水中化学品浓度、水相传质系数、气相传质系数、生物降解速率系数、悬浮颗粒物浓度、液膜转移系数、汽提速率系数、固液分配系数、沉淀池工艺参数等 目标污染物的传质损失和去除率(包括生物降解和吸附去除等过程) 芳香烃类:对二甲苯、苯、甲苯、二甲苯、乙苯、苯乙烯等
消毒剂:1,4-二氯苯[68, 74] WEST 稳态/动态
非箱体模型
质量守恒
浓度表达污水处理厂进水组分(包括可带电荷的溶解性组分和中性颗粒性组分)、COD组分、氮磷组分、污水处理工艺参数及分析动力学参数及化学计量学参数等 各处理单元中的水质变化过程以及不同状态下的污水厂污染物浓度预测 药物:磺胺甲噁唑、四环素和环丙沙星等
工业化学品:全氟和多氟烷基化合物(PFAS及其前体物)等(最新版本扩展功能,尚待公开数据验证)[26, 77, 81] Activity SimpleTreat 稳态
箱体模型
质量守恒
活度表达分子量、Kow、电离类型和酸解离常数(pKa和pKb)以及中性化学品的亨利常数(或蒸汽压与水溶解度)、环境排放速率、生物降解速率以及污水处理工艺参数等 化学品去除率(包括总去除、降解、吸附、挥发等过程)和各处置单元中化学品浓度分布 杀生剂:三氯生
药物:呋塞米、环丙沙星等[85, 89 − 90, 95] -
[1] WANG Z Y, WALKER G W, MUIR D C G, et al. Toward a global understanding of chemical pollution: A first comprehensive analysis of national and regional chemical inventories[J]. Environmental Science & Technology, 2020, 54(5): 2575-2584. [2] ALPIZAR F, BACKHAUS T, DECKER N, et al. UN environment global chemicals outlook Ⅱ - from legacies to innovative solutions: Implementing the 2030 agenda for sustainable development[R]. Nairobi, Kenya: United Nations Environment Programme, 2019. [3] QIN T L, HONG X S, CHEN R, et al. Evaluating environmental impact of STP effluents on receiving water in Beijing by the joint use of chemical analysis and biomonitoring[J]. Science of the Total Environment, 2021, 752: 141942. doi: 10.1016/j.scitotenv.2020.141942 [4] ZHONG R Y, ZOU H Y, GAO J, et al. A critical review on the distribution and ecological risk assessment of steroid hormones in the environment in China[J]. Science of the Total Environment, 2021, 786: 147452. doi: 10.1016/j.scitotenv.2021.147452 [5] LU S, WANG J, WANG B D, et al. Comprehensive profiling of the distribution, risks and priority of pharmaceuticals and personal care products: A large-scale study from rivers to coastal seas[J]. Water Research, 2023, 230: 119591. doi: 10.1016/j.watres.2023.119591 [6] XU X M, XU Y R, XU N, et al. Pharmaceuticals and personal care products (PPCPs) in water, sediment and freshwater mollusks of the Dongting lake downstream the three gorges dam[J]. Chemosphere, 2022, 301: 134721. doi: 10.1016/j.chemosphere.2022.134721 [7] ABRAHAM D G, LIBERATORE H K, AZIZ M T, et al. Impacts of hydraulic fracturing wastewater from oil and gas industries on drinking water: Quantification of 69 disinfection by-products and calculated toxicity[J]. Science of the Total Environment, 2023, 882: 163344. doi: 10.1016/j.scitotenv.2023.163344 [8] XIAO R, OU T, DING S K, et al. Disinfection by-products as environmental contaminants of emerging concern: A review on their occurrence, fate and removal in the urban water cycle[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(1): 19-46. doi: 10.1080/10643389.2022.2043101 [9] ZHANG H Y, HUANG Z, LIU Y H, et al. Occurrence and risks of 23 tire additives and their transformation products in an urban water system[J]. Environment International, 2023, 171: 107715. doi: 10.1016/j.envint.2022.107715 [10] ARNOLD W A, BLUM A, BRANYAN J, et al. Quaternary ammonium compounds: A chemical class of emerging concern[J]. Environmental Science & Technology, 2023, 57(20): 7645-7665. [11] 张少轩, 陈安娜, 陈成康, 等. 持久性、迁移性和潜在毒性化学品环境健康风险与控制研究现状及趋势分析[J]. 环境科学, 2023, 44(6): 3017-3023. ZHANG S X, CHEN A N, CHEN C K, et al. Research status and trend analysis of environmental and health risk and control of persistent, mobile, and toxic chemicals[J]. Environmental Science, 2023, 44(6): 3017-3023 (in Chinese).
[12] CERVENY D, GRABIC R, FEDOROVA G, et al. Fate of perfluoroalkyl substances within a small stream food web affected by sewage effluent[J]. Water Research, 2018, 134: 226-233. doi: 10.1016/j.watres.2018.01.066 [13] KIM J, XIN X Y, MAMO B T, et al. Occurrence and fate of ultrashort-chain and other per- and polyfluoroalkyl substances (PFAS) in wastewater treatment plants[J]. ACS ES& T Water, 2022, 2(8): 1380-1390. [14] 张佩萱, 高丽荣, 宋世杰, 等. 环境中短链和中链氯化石蜡的来源、污染特征及环境行为研究进展[J]. 环境化学, 2021, 40(2): 371-383. doi: 10.7524/j.issn.0254-6108.2020101603 ZHANG P X, GAO L R, SONG S J, et al. Chlorinated paraffins in the environment: A review on their sources, levels and fate[J]. Environmental Chemistry, 2021, 40(2): 371-383 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020101603
[15] REY-MARTINEZ N, GUISASOLA A, BAEZA J A. Assessment of the significance of heavy metals, pesticides and other contaminants in recovered products from water resource recovery facilities[J]. Resources Conservation and Recycling, 2022, 182: 106313. doi: 10.1016/j.resconrec.2022.106313 [16] DAN A, CHEN C X, ZOU M Y, et al. Removal efficiency, kinetic, and behavior of antibiotics from sewage treatment plant effluent in a hybrid constructed wetland and a layered biological filter[J]. Journal of Environmental Management, 2021, 288: 112435. doi: 10.1016/j.jenvman.2021.112435 [17] CAMPOS J M, QUEIROZ S C N, ROSTON D M. Removal of the endocrine disruptors ethinyl estradiol, bisphenol a, and levonorgestrel by subsurface constructed wetlands[J]. Science of the Total Environment, 2019, 693: 133514. doi: 10.1016/j.scitotenv.2019.07.320 [18] NOUTSOPOULOS C, KOUMAKI E, SARANTOPOULOS V, et al. Analytical and mathematical assessment of emerging pollutants fate in a river system[J]. Journal of Hazardous Materials, 2019, 364: 48-58. doi: 10.1016/j.jhazmat.2018.10.033 [19] DE HEREDIA I B, GARBISU C, ALKORTA I, et al. Spatio-seasonal patterns of the impact of wastewater treatment plant effluents on antibiotic resistance in river sediments[J]. Environmental Pollution, 2023, 319: 120883. doi: 10.1016/j.envpol.2022.120883 [20] XU Y P, QING D H, XIE R L, et al. Integrated passive sampling and fugacity model to characterize fate and removal of organophosphate flame retardants in an anaerobic-anoxic-oxic municipal wastewater treatment system[J]. Journal of Hazardous Materials, 2022, 424: 127288. doi: 10.1016/j.jhazmat.2021.127288 [21] THUNNISSEN N W, VAN DE MEENT D, STRUIJS J, et al. Simulating behavior of petroleum compounds during refinery effluent treatment using the simpletreat model[J]. Chemosphere, 2021, 263: 128081. doi: 10.1016/j.chemosphere.2020.128081 [22] 周林军, 刘济宁, 石利利, 等. 好氧生化污水处理厂化学品暴露预测模型构建[J]. 环境科学, 2016, 37(1): 228-239. ZHOU L J, LIU J N, SHI L L, et al. Development of chemical exposure prediction model for aerobic sewage treatment plant for biochemical wastewaters[J]. Environmental Science, 2016, 37(1): 228-239 (in Chinese).
[23] FRANCO A, SONG L, TRAPP S. Activity Simpletreat - user instructions[EB/OL]. [24] CALVO M J, PRATA A A, HOINASKI L, et al. Sensitivity analysis of the water9 model: Emissions of odorous compounds from passive liquid surfaces present in wastewater treatment plants[J]. Water Science and Technology, 2018, 77: 903-912. [25] HYDROMANTIS. Toxchem: Predict & report toxic emissions[EB/OL]. [26] DHI. Wastewater treatment process modelling at its finest[EB/OL]. [27] BYRNS G. The fate of xenobiotic organic compounds in wastewater treatment plants[J]. Water Research, 2001, 35(10): 2523-2533. doi: 10.1016/S0043-1354(00)00529-7 [28] COWAN C E, LARSON R J, FEIJTEL T C J, et al. An improved model for predicting the fate of consumer product chemicals in waste-water treatment plants[J]. Water Research, 1993, 27(4): 561-573. doi: 10.1016/0043-1354(93)90165-E [29] URASE T, KIKUTA T. Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process[J]. Water Research, 2005, 39(7): 1289-1300. doi: 10.1016/j.watres.2005.01.015 [30] 青达罕, 许宜平, 王子健. 基于环境逸度模型的化学物质暴露与风险评估研究进展[J]. 生态毒理学报, 2018, 13(6): 13-29. QING D H, XU Y P, WANG Z J. The evolution of environmental fugacity models on chemical exposure and risk assessment[J]. Asian Journal of Ecotoxicology, 2018, 13(6): 13-29 (in Chinese).
[31] 周林军, 古文, 刘济宁, 等. 化学品环境暴露评估模型研究进展[J]. 生态毒理学报, 2018, 13(1): 61-74. doi: 10.7524/AJE.1673-5897.20170119002 ZHOU L J, GU W, LIU J N, et al. Review on environmental exposure models for chemicals[J]. Asian Journal of Ecotoxicology, 2018, 13(1): 61-74 (in Chinese). doi: 10.7524/AJE.1673-5897.20170119002
[32] 李思思, 张亮, 刘宏斌, 等. 基于径流路径的分布式面源污染模型研发与应用进展[J]. 生态学报, 2023, 42(6): 2477-2488. LI S S, ZHANG L, LIU H B, et al. Progress on the development and application of a runoff pathway-based Spatially and Temporally distributed Model for Non-Point Source pollution[J]. Acta Ecologica Sinica, 2022, 42(6): 2477-2488 (in Chinese).
[33] 颜小曼, 陈磊, 郭晨茜, 等. 农药非点源模拟研究进展: 流失、传输及归趋[J]. 农业环境科学学报, 2022, 41(11): 2338-2351. doi: 10.11654/jaes.2022-0801 YAN X M, CHEN L, GUO C X, et al. Research progress on pesticide non-point source simulation: Loss, transport, and fate[J]. Journal of Agro-Environment Science, 2022, 41(11): 2338-2351 (in Chinese). doi: 10.11654/jaes.2022-0801
[34] 张少轩, 张冰, 张芊芊, 等. 化学品环境归趋模型及应用[J]. 环境化学, 2019, 38(8): 1684-1707. doi: 10.7524/j.issn.0254-6108.2018102601 ZHANG S X, ZHANG B, ZHANG Q Q, et al. Chemical environmental fate models and their applications[J]. Environmental Chemistry, 2019, 38(8): 1684-1707 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018102601
[35] TONG X N, MOHAPATRA S, ZHANG J J, et al. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives[J]. Water Research, 2022, 217: 118418. doi: 10.1016/j.watres.2022.118418 [36] BAVUMIRAGIRA J P, GE J N, YIN H L. Fate and transport of pharmaceuticals in water systems: A processes review[J]. Science of the Total Environment, 2022, 823: 153635. doi: 10.1016/j.scitotenv.2022.153635 [37] LU Z, TIAN W, ZHANG S, et al. A study combining a sediment-seawater microcosm with multimedia fugacity model to evaluate the effect of tidal cycles on polycyclic aromatic hydrocarbon release from sediments[J]. Science of the Total Environment, 2023, 891: 164340. doi: 10.1016/j.scitotenv.2023.164340 [38] ZHOU Y Q, SHI B, BI R, et al. Optimizing the fugacity model to select appropriate remediation pathways for perfluoroalkyl substances (PFASs) in a lake[J]. Journal of Hazardous Materials, 2022, 438: 129558. doi: 10.1016/j.jhazmat.2022.129558 [39] SHI W T, LIU Q, CAO J C, et al. Analysis of the multi-media environmental behavior of polycyclic aromatic hydrocarbons (PAHs) within Haizhou Bay using a fugacity model[J]. Marine Pollution Bulletin, 2023, 187: 114603. doi: 10.1016/j.marpolbul.2023.114603 [40] SHI T, LI R, FU J, et al. Fate of organophosphate esters from the northwestern pacific to the Southern Ocean: Occurrence, distribution, and fugacity model simulation[J]. Journal of Environmental Sciences, 2024, 137: 347-357. doi: 10.1016/j.jes.2023.03.001 [41] SU C, ZHANG H, CRIDGE C, et al. A review of multimedia transport and fate models for chemicals: Principles, features and applicability[J]. Science of the Total Environment, 2019, 668: 881-892. doi: 10.1016/j.scitotenv.2019.02.456 [42] MACKAY D. Finding fugacity feasible[J]. Environmental Science & Technology, 1979, 13(10): 1218-1223. [43] MACKAY D, PATERSON S. Evaluating the multimedia fate of organic-chemicals - a level-iii fugacity model[J]. Environmental Science & Technology, 1991, 25(3): 427-436. [44] CLARK B, HENRY G L, MACKAY D. Fugacity analysis and model of organic chemical fate in a sewage treatment plant[J]. Environmental Science & Technology, 1995, 29(6): 1488-1494. [45] TAN B L L, HAWKER D W, MUELLER J F, et al. Modelling of the fate of selected endocrine disruptors in a municipal wastewater treatment plant in south east Queensland, Australia[J]. Chemosphere, 2007, 69(4): 644-654. doi: 10.1016/j.chemosphere.2007.02.057 [46] SETH R, WEBSTER E, MACKAY D. Continued development of a mass balance model of chemical fate in a sewage treatment plant[J]. Water Research, 2008, 42(3): 595-604. doi: 10.1016/j.watres.2007.08.004 [47] THOMPSON K, ZHANG J Y, ZHANG C L. Use of fugacity model to analyze temperature-dependent removal of micro-contaminants in sewage treatment plants[J]. Chemosphere, 2011, 84(8): 1066-1071. doi: 10.1016/j.chemosphere.2011.04.063 [48] 丁毅. 污水处理系统中防腐杀菌剂的归趋研究及模型模拟[D]. 哈尔滨:哈尔滨工业大学, 2018. DING Y. Study on the fate of antiseptics in sewage treatment systems and model simulation[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
[49] STRUIJS J. Simpletreat 4.0: A model to predict fate and emission of chemicals in wastewater treatment plants[R]. Bilthoven, Netherlands: RIVM, 2014. [50] FLORI M. Influence of hydraulic retention time on organic pollutants elimination from wastewater[J]. Journal of Water Chemistry and Technology, 2022, 44(4): 232-235. doi: 10.3103/S1063455X22040075 [51] SOL D, MENENDEZ-MANJON A, ARIAS-GARCIA P, et al. Occurrence of selected emerging contaminants in southern Europe WWTPs: Comparison of simulations and real data[J]. Processes, 2022, 10(12): 2491. doi: 10.3390/pr10122491 [52] FRIES E, GREWAL T, SUHRING R. Persistent, mobile, and toxic plastic additives in Canada: Properties and prioritization[J]. Environmental Science-Processes & Impacts, 2022, 24(10): 1945-1956. [53] ECHA. EUSES - European union system for the evaluation of substances[EB/OL]. [54] DUARTE D J, NIEBAUM G, LAMMCHEN V, et al. Ecological risk assessment of pharmaceuticals in the transboundary Vecht river (Germany and the Netherlands)[J]. Environmental Toxicology and Chemistry, 2022, 41(3): 648-662. doi: 10.1002/etc.5062 [55] ZHANG S X, ZHANG Q Q, LIU Y S, et al. Emission and fate of antibiotics in the Dongjiang river basin, China: Implication for antibiotic resistance risk[J]. Science of the Total Environment, 2020, 712: 136518. doi: 10.1016/j.scitotenv.2020.136518 [56] LAMMCHEN V, NIEBAUM G, BERLEKAMP J, et al. Geo-referenced simulation of pharmaceuticals in whole watersheds: Application of great-er 4.1 in Germany[J]. Environmental Science and Pollution Research, 2021, 28(17): 21926-21935. doi: 10.1007/s11356-020-12189-7 [57] LI L. Modeling the fate of chemicals in products[M]. Singapore: Springer, 2020. [58] STRUIJS J, STOLTENKAMP J, VAN DE MEENT D. A spreadsheet-based box model to predict the fate of xenobiotics in a municipal wastewater treatment plant[J]. Water Research, 1991, 25(7): 891-900. doi: 10.1016/0043-1354(91)90170-U [59] GOVIND R, LAI L, DOBBS R. Integrated model for predicting the fate of organics in wastewater treatment plants[J]. Environmental Progress, 1991, 10(1): 13-23. doi: 10.1002/ep.670100111 [60] NORVILL Z N, TOLEDO-CERVANTES A, BLANCO S, et al. Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds[J]. Bioresource Technology, 2017, 232: 35-43. doi: 10.1016/j.biortech.2017.02.011 [61] 龙彦宇, 何成达, 孙舟, 等. 基于WATER9模型的城镇污水处理中VOCs排放量研究[J]. 环境监测管理与技术, 2022, 34(2): 16-19. doi: 10.3969/j.issn.1006-2009.2022.02.004 LONG Y Y, HE C D, SUN Z, et al. Investigation of VOCs emissions from urban sewage treatment based on WATER9 model[J]. The Administration and Technique of Environmental Monitoring, 2022, 34(2): 16-19 (in Chinese). doi: 10.3969/j.issn.1006-2009.2022.02.004
[62] 孙舟. 基于WATER9的城镇污水处理设施VOCs排放研究[D]. 扬州: 扬州大学, 2020. SUN Z. Study on VOCs discharge from urban sewage treatment facilities based on WATER9[D]. Yangzhou: Yangzhou University, 2020 (in Chinese).
[63] 呼佳宁. 某石化企业废水处理站VOCs排放量估算及自厂排放系数研究[D]. 北京: 中国矿业大学, 2017. HU J N. Estimation for VOCs emission from A petrochemical enterprise’s wastewater treatment plant and research of self-emission factor[D]. Beijing: China University of Mining and Technology, 2017 (in Chinese).
[64] 洪渝翔. 石化废水处理厂挥发性有机物检测及排放量推估[D]. 中国台湾:辅英科技大学, 2013. HONG Y X. Detection and estimation of volatile organic compounds in petrochemical wastewater treatment plants[D]. China Taiwan: Fuying University of Science and Technology, 2013 (in Chinese).
[65] 张钢锋, 呼佳宁, 李向东. 基于water9模型的石化行业废水处理环节VOCs排放研究[J]. 上海化工, 2016, 41(9): 32-36. doi: 10.3969/j.issn.1004-017X.2016.09.013 ZHANG G F, HU J N, LI X D. Study on VOCs emission of wastewater treatment in petrochemical plant using WATER9 model[J]. Shanghai Chemical Industry, 2016, 41(9): 32-36 (in Chinese). doi: 10.3969/j.issn.1004-017X.2016.09.013
[66] 耿雪松, 张春林, 王伯光. 城市污水处理厂污水处理工艺对VOCs挥发特征影响[J]. 中国环境科学, 2015, 35(7): 1990-1997. doi: 10.3969/j.issn.1000-6923.2015.07.012 GENG X S, ZHANG C L, WANG B G. Effects of treatment processes on the emission characteristics of volatile organic compounds (VOCs) in a municipal sewage treatment plant[J]. China Environmental Science, 2015, 35(7): 1990-1997 (in Chinese). doi: 10.3969/j.issn.1000-6923.2015.07.012
[67] 左申梅. 石化企业延迟焦化装置VOCs排放量监测与核算模型研究[D]. 北京: 北京化工大学, 2019. ZUO S M. Research on monitoring and accounting model of VOCs emissions from delayed coking units in petrochemical enterprises[D]. Beijing: Beijing University of Chemical Technology, 2019 (in Chinese).
[68] MELCER H, BELL J P, THOMPSON D J, et al. Modeling volatile organic contaminants' fate in wastewater treatment plants[J]. Journal of Environmental Engineering, 1994,120(3): 588-609. doi: 10.2175/106143095X133158 [69] FARIS A M, NILE B K, MUSSA Z H, et al. Fate and emission of methyl mercaptan in a full-scale MBBR process by TOXCHEM simulation[J]. Journal of Water and Climate Change, 2022, 13(6): 2386-2398. doi: 10.2166/wcc.2022.438 [70] MAHMOUDI E, JODEIRI NAGHASHKAR N, REZAEE M, et al. Estimation of pollutant emissions from the wastewater treatment plant of an oil refining company by TOXCHEM software[J]. Journal of Environmental Science and Technology, 2023, 24(11): 15-26. [71] LINDBLOM E U. Dynamic modelling of micropollutants in the integrated urban wastewater system[D]. Technical University of Denmark, Kgs. Lyngby, Denmark, 2009. [72] ESLAMI N, FATEHIFAR E, KAYNEJAD M A. A 3d mathematical evaluation of the emission into the air of reactive BTEX compounds: A new approach for mechanism reduction[J]. Environmental Engineering Research, 2022, 27(6): 210196. [73] U. S. EPA. Appendix to part 63 - monitoring procedure for nonthoroughly mixed open biological treatment systems at kraft pulp mills under unsafe sampling conditions[EB/OL]. [74] BEHNAMI A, BENIS K Z, SHAKERKHATIBI M, et al. A systematic approach for selecting an optimal strategy for controlling VOCs emissions in a petrochemical wastewater treatment plant[J]. Stochastic Environmental Research and Risk Assessment, 2019, 33(1): 13-29. doi: 10.1007/s00477-018-1623-0 [75] ZWAIN H M, NILE B K, FARIS A M, et al. Modelling of hydrogen sulfide fate and emissions in extended aeration sewage treatment plant using TOXCHEM simulations[J]. Scientific Reports, 2020, 10(1): 22209. doi: 10.1038/s41598-020-79395-8 [76] MUOIO R, PALLI L, DUCCI I, et al. Optimization of a large industrial wastewater treatment plant using a modeling approach: A case study[J]. Journal of Environmental Management, 2019, 249: 109436. doi: 10.1016/j.jenvman.2019.109436 [77] 邵袁. 基于WEST软件模拟的城市污水厂的优化运行研究[D]. 南京: 东南大学, 2019. SHAO Y. Research on optimizing operation for urban wastewater treatment plant based on WEST software[D]. Nanjing: Southeast University, 2019 (in Chinese).
[78] 黄宇, 刘胜军, 陈阳, 等. 仿真模拟在污水处理厂升级改造方案优化比选中的应用[J]. 给水排水, 2016, 52(9): 125-127. doi: 10.3969/j.issn.1002-8471.2016.09.027 HUANG Y, LIU S J, CHEN Y, et al. Application of simulation in optimization and selection of upgrading scheme of sewage treatment plant[J]. Water & Wastewater Engineering, 2016, 52(9): 125-127 (in Chinese). doi: 10.3969/j.issn.1002-8471.2016.09.027
[79] MOLEFE L H. Using mathematical models to track phosphorus in a full-scale wastewater treatment plant[D]. Masters. University of Cape Town, South Africa, 2022. [80] 张蓉. 仿真软件在AAO、CAST和MBR污水厂的应用研究[D]. 重庆: 重庆大学, 2017. ZHANG R. Research on application of simulation software in AAO, CAST and MBR WWTP[D]. Chongqing:Chongqing University,2017 (in Chinese).
[81] PLOSZ B G, LEKNES H, THOMAS K V. Impacts of competitive inhibition, parent compound formation and partitioning behavior on the removal of antibiotics in municipal wastewater treatment[J]. Environmental Science & Technology, 2010, 44(2): 734-742. [82] WANG Y F, FAN L H, KHAN S J, et al. Fugacity modelling of the fate of micropollutants in aqueous systems - uncertainty and sensitivity issues[J]. Science of the Total Environment, 2020, 699: 134249. doi: 10.1016/j.scitotenv.2019.134249 [83] VAN DE MEENT D, DE ZWART D, STRUIJS J, et al. Expected risk as basis for assessment of safe use of chemicals[J]. Environmental Sciences Europe, 2023, 35(1): 1-13. doi: 10.1186/s12302-022-00702-3 [84] FRANCO A, TRAPP S. A multimedia activity model for ionizable compounds: Validation study with 2, 4-dichlorophenoxyacetic acid, aniline, and trimethoprim[J]. Environmental Toxicology and Chemistry, 2010, 29(4): 789-799. doi: 10.1002/etc.115 [85] TRAPP S, FRANCO A, MACKAY D. Activity-based concept for transport and partitioning of ionizing organics[J]. Environmental Science & Technology, 2010, 44(16): 6123-6129. [86] ZHU Y, HUANG H J, ZHANG Y H, et al. Evaluation of PAHs in edible parts of vegetables and their human health risks in Jinzhong city, Shanxi province, China: A multimedia modeling approach[J]. Science of the Total Environment, 2021, 773: 145076. doi: 10.1016/j.scitotenv.2021.145076 [87] FU W, FRANCO A, TRAPP S. Methods for estimating the bioconcentration factor of ionizable organic chemicals[J]. Environmental Toxicology and Chemistry, 2009, 28(7): 1372-9. doi: 10.1897/08-233.1 [88] GHIRARDINI A, VERLICCHI P, ZOBOLI O, et al. Mass balance of selected pharmaceuticals in an Austrian river catchment area: Estimation of the different source contributions[C]. 16th International Conference on Environmental Science and Technology, Rhodes, Greece, 2019: 1-2. [89] POLESEL F, PLOSE B G, TRAPP S. From consumption to harvest: Environmental fate prediction of excreted ionizable trace organic chemicals[J]. Water Research, 2015, 84: 85-98. doi: 10.1016/j.watres.2015.06.033 [90] FRANCO A, STRUIJS J, GOUIN T, et al. Evolution of the sewage treatment plant model Simpletreat: Applicability domain and data requirements[J]. Integrated Environmental Assessment and Management, 2013, 9(4): 560-568. doi: 10.1002/ieam.1414 [91] ZHANG Z F, WANG L, ZHANG X M, et al. Fate processes of parabens, triclocarban and triclosan during wastewater treatment: Assessment via field measurements and model simulations[J]. Environmental Science and Pollution Research, 2021, 28(36): 50602-50610. doi: 10.1007/s11356-021-14141-9 [92] WANG J, MCPHEDRAN K N, SETH R, et al. Evaluation of the stp model: Comparison of modelled and experimental results for ten polycyclic aromatic hydrocarbons (PAHs)[J]. Chemosphere, 2007, 69(11): 1802-1806. doi: 10.1016/j.chemosphere.2007.06.013 [93] LAUTZ L S, STRUIJS J, NOLTE T M, et al. Evaluation of Simpletreat 4.0: Simulations of pharmaceutical removal in wastewater treatment plant facilities[J]. Chemosphere, 2017, 168: 870-876. doi: 10.1016/j.chemosphere.2016.10.123 [94] ARTOLA-GARICANO E, HERMENS J L M, VAES W H J. Evaluation of Simpletreat 3.0 for two hydrophobic and slowly biodegradable chemicals: Polycyclic musks HHCB and AHTN[J]. Water Research, 2003, 37(18): 4377-4384. doi: 10.1016/S0043-1354(03)00434-2 [95] POLESEL F. Modelling the fate of xenobiotic trace chemicals via wastewater treatment and agricultural resource reuse[D]. PhD Thesis. Technical University of Denmark, DTU Environment, Denmark, 2016. [96] 周林军, 冯洁, 刘济宁, et al. 污水处理厂中化学品暴露预测模型研究进展[J]. 环境科学与技术, 2015, 38(8): 68-74. ZHOU L J, FENG J, LIU J N, et al. Models of exposure prediction for chemicals in the sewage treatment plant: A review[J]. Environmental Science & Technology, 2015, 38(8): 68-74 (in Chinese).
[97] TAO M Y, KELLER A A. Chemfate: A fate and transport modeling framework for evaluating radically different chemicals under comparable conditions[J]. Chemosphere, 2020, 255: 126897. doi: 10.1016/j.chemosphere.2020.126897 [98] HIJOSA-VALSERO M, FINK G, SCHLUSENER M P, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization[J]. Chemosphere, 2011, 83(5): 713-719. doi: 10.1016/j.chemosphere.2011.02.004 [99] SUBEDI B, KANNAN K. Occurrence and fate of select psychoactive pharmaceuticals and antihypertensives in two wastewater treatment plants in New York State, USA[J]. Science of the Total Environment, 2015, 514: 273-280. doi: 10.1016/j.scitotenv.2015.01.098 [100] UUSITALO L, LEHIKOINEN A, HELLE I, et al. An overview of methods to evaluate uncertainty of deterministic models in decision support[J]. Environmental Modelling & Software, 2015, 63: 24-31. [101] POMIES M, CHOUBERT J M, WISNIEWSKI C, et al. Modelling of micropollutant removal in biological wastewater treatments: A review[J]. Science of the Total Environment, 2013, 443: 733-748. doi: 10.1016/j.scitotenv.2012.11.037 [102] WANG D G, AGGARWAL M, TAIT T, et al. Fate of anthropogenic cyclic volatile methylsiloxanes in a wastewater treatment plant[J]. Water Research, 2015, 72: 209-217. doi: 10.1016/j.watres.2014.10.007 [103] BOCK M, LYNDALL J, BARBER T, et al. Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment[J]. Integrated Environmental Assessment and Management, 2010, 6(3): 393-404. doi: 10.1897/IEAM_2009-070.1