[1] |
WANG Z Y, WALKER G W, MUIR D C G, et al. Toward a global understanding of chemical pollution: A first comprehensive analysis of national and regional chemical inventories[J]. Environmental Science & Technology, 2020, 54(5): 2575-2584.
|
[2] |
ALPIZAR F, BACKHAUS T, DECKER N, et al. UN environment global chemicals outlook Ⅱ - from legacies to innovative solutions: Implementing the 2030 agenda for sustainable development[R]. Nairobi, Kenya: United Nations Environment Programme, 2019.
|
[3] |
QIN T L, HONG X S, CHEN R, et al. Evaluating environmental impact of STP effluents on receiving water in Beijing by the joint use of chemical analysis and biomonitoring[J]. Science of the Total Environment, 2021, 752: 141942. doi: 10.1016/j.scitotenv.2020.141942
|
[4] |
ZHONG R Y, ZOU H Y, GAO J, et al. A critical review on the distribution and ecological risk assessment of steroid hormones in the environment in China[J]. Science of the Total Environment, 2021, 786: 147452. doi: 10.1016/j.scitotenv.2021.147452
|
[5] |
LU S, WANG J, WANG B D, et al. Comprehensive profiling of the distribution, risks and priority of pharmaceuticals and personal care products: A large-scale study from rivers to coastal seas[J]. Water Research, 2023, 230: 119591. doi: 10.1016/j.watres.2023.119591
|
[6] |
XU X M, XU Y R, XU N, et al. Pharmaceuticals and personal care products (PPCPs) in water, sediment and freshwater mollusks of the Dongting lake downstream the three gorges dam[J]. Chemosphere, 2022, 301: 134721. doi: 10.1016/j.chemosphere.2022.134721
|
[7] |
ABRAHAM D G, LIBERATORE H K, AZIZ M T, et al. Impacts of hydraulic fracturing wastewater from oil and gas industries on drinking water: Quantification of 69 disinfection by-products and calculated toxicity[J]. Science of the Total Environment, 2023, 882: 163344. doi: 10.1016/j.scitotenv.2023.163344
|
[8] |
XIAO R, OU T, DING S K, et al. Disinfection by-products as environmental contaminants of emerging concern: A review on their occurrence, fate and removal in the urban water cycle[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(1): 19-46. doi: 10.1080/10643389.2022.2043101
|
[9] |
ZHANG H Y, HUANG Z, LIU Y H, et al. Occurrence and risks of 23 tire additives and their transformation products in an urban water system[J]. Environment International, 2023, 171: 107715. doi: 10.1016/j.envint.2022.107715
|
[10] |
ARNOLD W A, BLUM A, BRANYAN J, et al. Quaternary ammonium compounds: A chemical class of emerging concern[J]. Environmental Science & Technology, 2023, 57(20): 7645-7665.
|
[11] |
张少轩, 陈安娜, 陈成康, 等. 持久性、迁移性和潜在毒性化学品环境健康风险与控制研究现状及趋势分析[J]. 环境科学, 2023, 44(6): 3017-3023.
ZHANG S X, CHEN A N, CHEN C K, et al. Research status and trend analysis of environmental and health risk and control of persistent, mobile, and toxic chemicals[J]. Environmental Science, 2023, 44(6): 3017-3023 (in Chinese).
|
[12] |
CERVENY D, GRABIC R, FEDOROVA G, et al. Fate of perfluoroalkyl substances within a small stream food web affected by sewage effluent[J]. Water Research, 2018, 134: 226-233. doi: 10.1016/j.watres.2018.01.066
|
[13] |
KIM J, XIN X Y, MAMO B T, et al. Occurrence and fate of ultrashort-chain and other per- and polyfluoroalkyl substances (PFAS) in wastewater treatment plants[J]. ACS ES& T Water, 2022, 2(8): 1380-1390.
|
[14] |
张佩萱, 高丽荣, 宋世杰, 等. 环境中短链和中链氯化石蜡的来源、污染特征及环境行为研究进展[J]. 环境化学, 2021, 40(2): 371-383. doi: 10.7524/j.issn.0254-6108.2020101603
ZHANG P X, GAO L R, SONG S J, et al. Chlorinated paraffins in the environment: A review on their sources, levels and fate[J]. Environmental Chemistry, 2021, 40(2): 371-383 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020101603
|
[15] |
REY-MARTINEZ N, GUISASOLA A, BAEZA J A. Assessment of the significance of heavy metals, pesticides and other contaminants in recovered products from water resource recovery facilities[J]. Resources Conservation and Recycling, 2022, 182: 106313. doi: 10.1016/j.resconrec.2022.106313
|
[16] |
DAN A, CHEN C X, ZOU M Y, et al. Removal efficiency, kinetic, and behavior of antibiotics from sewage treatment plant effluent in a hybrid constructed wetland and a layered biological filter[J]. Journal of Environmental Management, 2021, 288: 112435. doi: 10.1016/j.jenvman.2021.112435
|
[17] |
CAMPOS J M, QUEIROZ S C N, ROSTON D M. Removal of the endocrine disruptors ethinyl estradiol, bisphenol a, and levonorgestrel by subsurface constructed wetlands[J]. Science of the Total Environment, 2019, 693: 133514. doi: 10.1016/j.scitotenv.2019.07.320
|
[18] |
NOUTSOPOULOS C, KOUMAKI E, SARANTOPOULOS V, et al. Analytical and mathematical assessment of emerging pollutants fate in a river system[J]. Journal of Hazardous Materials, 2019, 364: 48-58. doi: 10.1016/j.jhazmat.2018.10.033
|
[19] |
DE HEREDIA I B, GARBISU C, ALKORTA I, et al. Spatio-seasonal patterns of the impact of wastewater treatment plant effluents on antibiotic resistance in river sediments[J]. Environmental Pollution, 2023, 319: 120883. doi: 10.1016/j.envpol.2022.120883
|
[20] |
XU Y P, QING D H, XIE R L, et al. Integrated passive sampling and fugacity model to characterize fate and removal of organophosphate flame retardants in an anaerobic-anoxic-oxic municipal wastewater treatment system[J]. Journal of Hazardous Materials, 2022, 424: 127288. doi: 10.1016/j.jhazmat.2021.127288
|
[21] |
THUNNISSEN N W, VAN DE MEENT D, STRUIJS J, et al. Simulating behavior of petroleum compounds during refinery effluent treatment using the simpletreat model[J]. Chemosphere, 2021, 263: 128081. doi: 10.1016/j.chemosphere.2020.128081
|
[22] |
周林军, 刘济宁, 石利利, 等. 好氧生化污水处理厂化学品暴露预测模型构建[J]. 环境科学, 2016, 37(1): 228-239.
ZHOU L J, LIU J N, SHI L L, et al. Development of chemical exposure prediction model for aerobic sewage treatment plant for biochemical wastewaters[J]. Environmental Science, 2016, 37(1): 228-239 (in Chinese).
|
[23] |
FRANCO A, SONG L, TRAPP S. Activity Simpletreat - user instructions[EB/OL].
|
[24] |
CALVO M J, PRATA A A, HOINASKI L, et al. Sensitivity analysis of the water9 model: Emissions of odorous compounds from passive liquid surfaces present in wastewater treatment plants[J]. Water Science and Technology, 2018, 77: 903-912.
|
[25] |
HYDROMANTIS. Toxchem: Predict & report toxic emissions[EB/OL].
|
[26] |
DHI. Wastewater treatment process modelling at its finest[EB/OL].
|
[27] |
BYRNS G. The fate of xenobiotic organic compounds in wastewater treatment plants[J]. Water Research, 2001, 35(10): 2523-2533. doi: 10.1016/S0043-1354(00)00529-7
|
[28] |
COWAN C E, LARSON R J, FEIJTEL T C J, et al. An improved model for predicting the fate of consumer product chemicals in waste-water treatment plants[J]. Water Research, 1993, 27(4): 561-573. doi: 10.1016/0043-1354(93)90165-E
|
[29] |
URASE T, KIKUTA T. Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process[J]. Water Research, 2005, 39(7): 1289-1300. doi: 10.1016/j.watres.2005.01.015
|
[30] |
青达罕, 许宜平, 王子健. 基于环境逸度模型的化学物质暴露与风险评估研究进展[J]. 生态毒理学报, 2018, 13(6): 13-29.
QING D H, XU Y P, WANG Z J. The evolution of environmental fugacity models on chemical exposure and risk assessment[J]. Asian Journal of Ecotoxicology, 2018, 13(6): 13-29 (in Chinese).
|
[31] |
周林军, 古文, 刘济宁, 等. 化学品环境暴露评估模型研究进展[J]. 生态毒理学报, 2018, 13(1): 61-74. doi: 10.7524/AJE.1673-5897.20170119002
ZHOU L J, GU W, LIU J N, et al. Review on environmental exposure models for chemicals[J]. Asian Journal of Ecotoxicology, 2018, 13(1): 61-74 (in Chinese). doi: 10.7524/AJE.1673-5897.20170119002
|
[32] |
李思思, 张亮, 刘宏斌, 等. 基于径流路径的分布式面源污染模型研发与应用进展[J]. 生态学报, 2023, 42(6): 2477-2488.
LI S S, ZHANG L, LIU H B, et al. Progress on the development and application of a runoff pathway-based Spatially and Temporally distributed Model for Non-Point Source pollution[J]. Acta Ecologica Sinica, 2022, 42(6): 2477-2488 (in Chinese).
|
[33] |
颜小曼, 陈磊, 郭晨茜, 等. 农药非点源模拟研究进展: 流失、传输及归趋[J]. 农业环境科学学报, 2022, 41(11): 2338-2351. doi: 10.11654/jaes.2022-0801
YAN X M, CHEN L, GUO C X, et al. Research progress on pesticide non-point source simulation: Loss, transport, and fate[J]. Journal of Agro-Environment Science, 2022, 41(11): 2338-2351 (in Chinese). doi: 10.11654/jaes.2022-0801
|
[34] |
张少轩, 张冰, 张芊芊, 等. 化学品环境归趋模型及应用[J]. 环境化学, 2019, 38(8): 1684-1707. doi: 10.7524/j.issn.0254-6108.2018102601
ZHANG S X, ZHANG B, ZHANG Q Q, et al. Chemical environmental fate models and their applications[J]. Environmental Chemistry, 2019, 38(8): 1684-1707 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018102601
|
[35] |
TONG X N, MOHAPATRA S, ZHANG J J, et al. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives[J]. Water Research, 2022, 217: 118418. doi: 10.1016/j.watres.2022.118418
|
[36] |
BAVUMIRAGIRA J P, GE J N, YIN H L. Fate and transport of pharmaceuticals in water systems: A processes review[J]. Science of the Total Environment, 2022, 823: 153635. doi: 10.1016/j.scitotenv.2022.153635
|
[37] |
LU Z, TIAN W, ZHANG S, et al. A study combining a sediment-seawater microcosm with multimedia fugacity model to evaluate the effect of tidal cycles on polycyclic aromatic hydrocarbon release from sediments[J]. Science of the Total Environment, 2023, 891: 164340. doi: 10.1016/j.scitotenv.2023.164340
|
[38] |
ZHOU Y Q, SHI B, BI R, et al. Optimizing the fugacity model to select appropriate remediation pathways for perfluoroalkyl substances (PFASs) in a lake[J]. Journal of Hazardous Materials, 2022, 438: 129558. doi: 10.1016/j.jhazmat.2022.129558
|
[39] |
SHI W T, LIU Q, CAO J C, et al. Analysis of the multi-media environmental behavior of polycyclic aromatic hydrocarbons (PAHs) within Haizhou Bay using a fugacity model[J]. Marine Pollution Bulletin, 2023, 187: 114603. doi: 10.1016/j.marpolbul.2023.114603
|
[40] |
SHI T, LI R, FU J, et al. Fate of organophosphate esters from the northwestern pacific to the Southern Ocean: Occurrence, distribution, and fugacity model simulation[J]. Journal of Environmental Sciences, 2024, 137: 347-357. doi: 10.1016/j.jes.2023.03.001
|
[41] |
SU C, ZHANG H, CRIDGE C, et al. A review of multimedia transport and fate models for chemicals: Principles, features and applicability[J]. Science of the Total Environment, 2019, 668: 881-892. doi: 10.1016/j.scitotenv.2019.02.456
|
[42] |
MACKAY D. Finding fugacity feasible[J]. Environmental Science & Technology, 1979, 13(10): 1218-1223.
|
[43] |
MACKAY D, PATERSON S. Evaluating the multimedia fate of organic-chemicals - a level-iii fugacity model[J]. Environmental Science & Technology, 1991, 25(3): 427-436.
|
[44] |
CLARK B, HENRY G L, MACKAY D. Fugacity analysis and model of organic chemical fate in a sewage treatment plant[J]. Environmental Science & Technology, 1995, 29(6): 1488-1494.
|
[45] |
TAN B L L, HAWKER D W, MUELLER J F, et al. Modelling of the fate of selected endocrine disruptors in a municipal wastewater treatment plant in south east Queensland, Australia[J]. Chemosphere, 2007, 69(4): 644-654. doi: 10.1016/j.chemosphere.2007.02.057
|
[46] |
SETH R, WEBSTER E, MACKAY D. Continued development of a mass balance model of chemical fate in a sewage treatment plant[J]. Water Research, 2008, 42(3): 595-604. doi: 10.1016/j.watres.2007.08.004
|
[47] |
THOMPSON K, ZHANG J Y, ZHANG C L. Use of fugacity model to analyze temperature-dependent removal of micro-contaminants in sewage treatment plants[J]. Chemosphere, 2011, 84(8): 1066-1071. doi: 10.1016/j.chemosphere.2011.04.063
|
[48] |
丁毅. 污水处理系统中防腐杀菌剂的归趋研究及模型模拟[D]. 哈尔滨:哈尔滨工业大学, 2018.
DING Y. Study on the fate of antiseptics in sewage treatment systems and model simulation[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
|
[49] |
STRUIJS J. Simpletreat 4.0: A model to predict fate and emission of chemicals in wastewater treatment plants[R]. Bilthoven, Netherlands: RIVM, 2014.
|
[50] |
FLORI M. Influence of hydraulic retention time on organic pollutants elimination from wastewater[J]. Journal of Water Chemistry and Technology, 2022, 44(4): 232-235. doi: 10.3103/S1063455X22040075
|
[51] |
SOL D, MENENDEZ-MANJON A, ARIAS-GARCIA P, et al. Occurrence of selected emerging contaminants in southern Europe WWTPs: Comparison of simulations and real data[J]. Processes, 2022, 10(12): 2491. doi: 10.3390/pr10122491
|
[52] |
FRIES E, GREWAL T, SUHRING R. Persistent, mobile, and toxic plastic additives in Canada: Properties and prioritization[J]. Environmental Science-Processes & Impacts, 2022, 24(10): 1945-1956.
|
[53] |
ECHA. EUSES - European union system for the evaluation of substances[EB/OL].
|
[54] |
DUARTE D J, NIEBAUM G, LAMMCHEN V, et al. Ecological risk assessment of pharmaceuticals in the transboundary Vecht river (Germany and the Netherlands)[J]. Environmental Toxicology and Chemistry, 2022, 41(3): 648-662. doi: 10.1002/etc.5062
|
[55] |
ZHANG S X, ZHANG Q Q, LIU Y S, et al. Emission and fate of antibiotics in the Dongjiang river basin, China: Implication for antibiotic resistance risk[J]. Science of the Total Environment, 2020, 712: 136518. doi: 10.1016/j.scitotenv.2020.136518
|
[56] |
LAMMCHEN V, NIEBAUM G, BERLEKAMP J, et al. Geo-referenced simulation of pharmaceuticals in whole watersheds: Application of great-er 4.1 in Germany[J]. Environmental Science and Pollution Research, 2021, 28(17): 21926-21935. doi: 10.1007/s11356-020-12189-7
|
[57] |
LI L. Modeling the fate of chemicals in products[M]. Singapore: Springer, 2020.
|
[58] |
STRUIJS J, STOLTENKAMP J, VAN DE MEENT D. A spreadsheet-based box model to predict the fate of xenobiotics in a municipal wastewater treatment plant[J]. Water Research, 1991, 25(7): 891-900. doi: 10.1016/0043-1354(91)90170-U
|
[59] |
GOVIND R, LAI L, DOBBS R. Integrated model for predicting the fate of organics in wastewater treatment plants[J]. Environmental Progress, 1991, 10(1): 13-23. doi: 10.1002/ep.670100111
|
[60] |
NORVILL Z N, TOLEDO-CERVANTES A, BLANCO S, et al. Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds[J]. Bioresource Technology, 2017, 232: 35-43. doi: 10.1016/j.biortech.2017.02.011
|
[61] |
龙彦宇, 何成达, 孙舟, 等. 基于WATER9模型的城镇污水处理中VOCs排放量研究[J]. 环境监测管理与技术, 2022, 34(2): 16-19. doi: 10.3969/j.issn.1006-2009.2022.02.004
LONG Y Y, HE C D, SUN Z, et al. Investigation of VOCs emissions from urban sewage treatment based on WATER9 model[J]. The Administration and Technique of Environmental Monitoring, 2022, 34(2): 16-19 (in Chinese). doi: 10.3969/j.issn.1006-2009.2022.02.004
|
[62] |
孙舟. 基于WATER9的城镇污水处理设施VOCs排放研究[D]. 扬州: 扬州大学, 2020.
SUN Z. Study on VOCs discharge from urban sewage treatment facilities based on WATER9[D]. Yangzhou: Yangzhou University, 2020 (in Chinese).
|
[63] |
呼佳宁. 某石化企业废水处理站VOCs排放量估算及自厂排放系数研究[D]. 北京: 中国矿业大学, 2017.
HU J N. Estimation for VOCs emission from A petrochemical enterprise’s wastewater treatment plant and research of self-emission factor[D]. Beijing: China University of Mining and Technology, 2017 (in Chinese).
|
[64] |
洪渝翔. 石化废水处理厂挥发性有机物检测及排放量推估[D]. 中国台湾:辅英科技大学, 2013.
HONG Y X. Detection and estimation of volatile organic compounds in petrochemical wastewater treatment plants[D]. China Taiwan: Fuying University of Science and Technology, 2013 (in Chinese).
|
[65] |
张钢锋, 呼佳宁, 李向东. 基于water9模型的石化行业废水处理环节VOCs排放研究[J]. 上海化工, 2016, 41(9): 32-36. doi: 10.3969/j.issn.1004-017X.2016.09.013
ZHANG G F, HU J N, LI X D. Study on VOCs emission of wastewater treatment in petrochemical plant using WATER9 model[J]. Shanghai Chemical Industry, 2016, 41(9): 32-36 (in Chinese). doi: 10.3969/j.issn.1004-017X.2016.09.013
|
[66] |
耿雪松, 张春林, 王伯光. 城市污水处理厂污水处理工艺对VOCs挥发特征影响[J]. 中国环境科学, 2015, 35(7): 1990-1997. doi: 10.3969/j.issn.1000-6923.2015.07.012
GENG X S, ZHANG C L, WANG B G. Effects of treatment processes on the emission characteristics of volatile organic compounds (VOCs) in a municipal sewage treatment plant[J]. China Environmental Science, 2015, 35(7): 1990-1997 (in Chinese). doi: 10.3969/j.issn.1000-6923.2015.07.012
|
[67] |
左申梅. 石化企业延迟焦化装置VOCs排放量监测与核算模型研究[D]. 北京: 北京化工大学, 2019.
ZUO S M. Research on monitoring and accounting model of VOCs emissions from delayed coking units in petrochemical enterprises[D]. Beijing: Beijing University of Chemical Technology, 2019 (in Chinese).
|
[68] |
MELCER H, BELL J P, THOMPSON D J, et al. Modeling volatile organic contaminants' fate in wastewater treatment plants[J]. Journal of Environmental Engineering, 1994,120(3): 588-609. doi: 10.2175/106143095X133158
|
[69] |
FARIS A M, NILE B K, MUSSA Z H, et al. Fate and emission of methyl mercaptan in a full-scale MBBR process by TOXCHEM simulation[J]. Journal of Water and Climate Change, 2022, 13(6): 2386-2398. doi: 10.2166/wcc.2022.438
|
[70] |
MAHMOUDI E, JODEIRI NAGHASHKAR N, REZAEE M, et al. Estimation of pollutant emissions from the wastewater treatment plant of an oil refining company by TOXCHEM software[J]. Journal of Environmental Science and Technology, 2023, 24(11): 15-26.
|
[71] |
LINDBLOM E U. Dynamic modelling of micropollutants in the integrated urban wastewater system[D]. Technical University of Denmark, Kgs. Lyngby, Denmark, 2009.
|
[72] |
ESLAMI N, FATEHIFAR E, KAYNEJAD M A. A 3d mathematical evaluation of the emission into the air of reactive BTEX compounds: A new approach for mechanism reduction[J]. Environmental Engineering Research, 2022, 27(6): 210196.
|
[73] |
U. S. EPA. Appendix to part 63 - monitoring procedure for nonthoroughly mixed open biological treatment systems at kraft pulp mills under unsafe sampling conditions[EB/OL].
|
[74] |
BEHNAMI A, BENIS K Z, SHAKERKHATIBI M, et al. A systematic approach for selecting an optimal strategy for controlling VOCs emissions in a petrochemical wastewater treatment plant[J]. Stochastic Environmental Research and Risk Assessment, 2019, 33(1): 13-29. doi: 10.1007/s00477-018-1623-0
|
[75] |
ZWAIN H M, NILE B K, FARIS A M, et al. Modelling of hydrogen sulfide fate and emissions in extended aeration sewage treatment plant using TOXCHEM simulations[J]. Scientific Reports, 2020, 10(1): 22209. doi: 10.1038/s41598-020-79395-8
|
[76] |
MUOIO R, PALLI L, DUCCI I, et al. Optimization of a large industrial wastewater treatment plant using a modeling approach: A case study[J]. Journal of Environmental Management, 2019, 249: 109436. doi: 10.1016/j.jenvman.2019.109436
|
[77] |
邵袁. 基于WEST软件模拟的城市污水厂的优化运行研究[D]. 南京: 东南大学, 2019.
SHAO Y. Research on optimizing operation for urban wastewater treatment plant based on WEST software[D]. Nanjing: Southeast University, 2019 (in Chinese).
|
[78] |
黄宇, 刘胜军, 陈阳, 等. 仿真模拟在污水处理厂升级改造方案优化比选中的应用[J]. 给水排水, 2016, 52(9): 125-127. doi: 10.3969/j.issn.1002-8471.2016.09.027
HUANG Y, LIU S J, CHEN Y, et al. Application of simulation in optimization and selection of upgrading scheme of sewage treatment plant[J]. Water & Wastewater Engineering, 2016, 52(9): 125-127 (in Chinese). doi: 10.3969/j.issn.1002-8471.2016.09.027
|
[79] |
MOLEFE L H. Using mathematical models to track phosphorus in a full-scale wastewater treatment plant[D]. Masters. University of Cape Town, South Africa, 2022.
|
[80] |
张蓉. 仿真软件在AAO、CAST和MBR污水厂的应用研究[D]. 重庆: 重庆大学, 2017.
ZHANG R. Research on application of simulation software in AAO, CAST and MBR WWTP[D]. Chongqing:Chongqing University,2017 (in Chinese).
|
[81] |
PLOSZ B G, LEKNES H, THOMAS K V. Impacts of competitive inhibition, parent compound formation and partitioning behavior on the removal of antibiotics in municipal wastewater treatment[J]. Environmental Science & Technology, 2010, 44(2): 734-742.
|
[82] |
WANG Y F, FAN L H, KHAN S J, et al. Fugacity modelling of the fate of micropollutants in aqueous systems - uncertainty and sensitivity issues[J]. Science of the Total Environment, 2020, 699: 134249. doi: 10.1016/j.scitotenv.2019.134249
|
[83] |
VAN DE MEENT D, DE ZWART D, STRUIJS J, et al. Expected risk as basis for assessment of safe use of chemicals[J]. Environmental Sciences Europe, 2023, 35(1): 1-13. doi: 10.1186/s12302-022-00702-3
|
[84] |
FRANCO A, TRAPP S. A multimedia activity model for ionizable compounds: Validation study with 2, 4-dichlorophenoxyacetic acid, aniline, and trimethoprim[J]. Environmental Toxicology and Chemistry, 2010, 29(4): 789-799. doi: 10.1002/etc.115
|
[85] |
TRAPP S, FRANCO A, MACKAY D. Activity-based concept for transport and partitioning of ionizing organics[J]. Environmental Science & Technology, 2010, 44(16): 6123-6129.
|
[86] |
ZHU Y, HUANG H J, ZHANG Y H, et al. Evaluation of PAHs in edible parts of vegetables and their human health risks in Jinzhong city, Shanxi province, China: A multimedia modeling approach[J]. Science of the Total Environment, 2021, 773: 145076. doi: 10.1016/j.scitotenv.2021.145076
|
[87] |
FU W, FRANCO A, TRAPP S. Methods for estimating the bioconcentration factor of ionizable organic chemicals[J]. Environmental Toxicology and Chemistry, 2009, 28(7): 1372-9. doi: 10.1897/08-233.1
|
[88] |
GHIRARDINI A, VERLICCHI P, ZOBOLI O, et al. Mass balance of selected pharmaceuticals in an Austrian river catchment area: Estimation of the different source contributions[C]. 16th International Conference on Environmental Science and Technology, Rhodes, Greece, 2019: 1-2.
|
[89] |
POLESEL F, PLOSE B G, TRAPP S. From consumption to harvest: Environmental fate prediction of excreted ionizable trace organic chemicals[J]. Water Research, 2015, 84: 85-98. doi: 10.1016/j.watres.2015.06.033
|
[90] |
FRANCO A, STRUIJS J, GOUIN T, et al. Evolution of the sewage treatment plant model Simpletreat: Applicability domain and data requirements[J]. Integrated Environmental Assessment and Management, 2013, 9(4): 560-568. doi: 10.1002/ieam.1414
|
[91] |
ZHANG Z F, WANG L, ZHANG X M, et al. Fate processes of parabens, triclocarban and triclosan during wastewater treatment: Assessment via field measurements and model simulations[J]. Environmental Science and Pollution Research, 2021, 28(36): 50602-50610. doi: 10.1007/s11356-021-14141-9
|
[92] |
WANG J, MCPHEDRAN K N, SETH R, et al. Evaluation of the stp model: Comparison of modelled and experimental results for ten polycyclic aromatic hydrocarbons (PAHs)[J]. Chemosphere, 2007, 69(11): 1802-1806. doi: 10.1016/j.chemosphere.2007.06.013
|
[93] |
LAUTZ L S, STRUIJS J, NOLTE T M, et al. Evaluation of Simpletreat 4.0: Simulations of pharmaceutical removal in wastewater treatment plant facilities[J]. Chemosphere, 2017, 168: 870-876. doi: 10.1016/j.chemosphere.2016.10.123
|
[94] |
ARTOLA-GARICANO E, HERMENS J L M, VAES W H J. Evaluation of Simpletreat 3.0 for two hydrophobic and slowly biodegradable chemicals: Polycyclic musks HHCB and AHTN[J]. Water Research, 2003, 37(18): 4377-4384. doi: 10.1016/S0043-1354(03)00434-2
|
[95] |
POLESEL F. Modelling the fate of xenobiotic trace chemicals via wastewater treatment and agricultural resource reuse[D]. PhD Thesis. Technical University of Denmark, DTU Environment, Denmark, 2016.
|
[96] |
周林军, 冯洁, 刘济宁, et al. 污水处理厂中化学品暴露预测模型研究进展[J]. 环境科学与技术, 2015, 38(8): 68-74.
ZHOU L J, FENG J, LIU J N, et al. Models of exposure prediction for chemicals in the sewage treatment plant: A review[J]. Environmental Science & Technology, 2015, 38(8): 68-74 (in Chinese).
|
[97] |
TAO M Y, KELLER A A. Chemfate: A fate and transport modeling framework for evaluating radically different chemicals under comparable conditions[J]. Chemosphere, 2020, 255: 126897. doi: 10.1016/j.chemosphere.2020.126897
|
[98] |
HIJOSA-VALSERO M, FINK G, SCHLUSENER M P, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization[J]. Chemosphere, 2011, 83(5): 713-719. doi: 10.1016/j.chemosphere.2011.02.004
|
[99] |
SUBEDI B, KANNAN K. Occurrence and fate of select psychoactive pharmaceuticals and antihypertensives in two wastewater treatment plants in New York State, USA[J]. Science of the Total Environment, 2015, 514: 273-280. doi: 10.1016/j.scitotenv.2015.01.098
|
[100] |
UUSITALO L, LEHIKOINEN A, HELLE I, et al. An overview of methods to evaluate uncertainty of deterministic models in decision support[J]. Environmental Modelling & Software, 2015, 63: 24-31.
|
[101] |
POMIES M, CHOUBERT J M, WISNIEWSKI C, et al. Modelling of micropollutant removal in biological wastewater treatments: A review[J]. Science of the Total Environment, 2013, 443: 733-748. doi: 10.1016/j.scitotenv.2012.11.037
|
[102] |
WANG D G, AGGARWAL M, TAIT T, et al. Fate of anthropogenic cyclic volatile methylsiloxanes in a wastewater treatment plant[J]. Water Research, 2015, 72: 209-217. doi: 10.1016/j.watres.2014.10.007
|
[103] |
BOCK M, LYNDALL J, BARBER T, et al. Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment[J]. Integrated Environmental Assessment and Management, 2010, 6(3): 393-404. doi: 10.1897/IEAM_2009-070.1
|