-
氯代芳构化合物(chlorinated aromatic hydrocarbons,CAHs)是一类芳香族化合物,其特征在于苯环上的一个或多个氢原子被氯原子所取代 . 它们在药物生产、汽车尾气以及工业热过程中产生或释放,是一类众所周知的有毒物质. 大部分的CAHs因其高毒性、生物累积性、远距离迁移性和难降解而被认定为持久性有机污染物(persistent organic pollutants,POPs),包括多氯联苯(polychlorinated biphenyls, PCBs),多氯萘(polychlorinated naphthalenes,PCNs)和二恶英(polychlorinated dibenzo-p-dioxins and dibenzofurans,PCDD/Fs),六氯苯(hexachlorobenzene,HCB)和五氯苯(petachlorobenzene,PeCB)等. 含有三个或更多稠环芳香环的氯代多环芳烃(chlorinated polycyclic aromatic hydrocarbons,Cl-PAHs)也被证实具有强烈的毒性和致癌突变特性,因此被认为是潜在POPs[1]. 许多研究表明,焚烧过程中产生的烟气中含有大量CAHs,是空气中的CAHs的主要来源[2]. 其中,多氯联苯的生成量与二恶英相当,多氯萘和氯代多环芳烃的生成量总和至少比二恶英高2—3个数量级,氯苯、氯酚类的含量通常比二恶英高3—6个数量级[3].
焚烧过程包括垃圾焚烧、工业固体废弃物焚烧、医疗废物焚烧、燃煤、燃气等人类生产工艺. 在焚烧过程中,烟气环境的特性会显著影响CAHs的生成和去除. 这些特性主要由焚烧过程中的各项参数,如温度、氧浓度以及原料的化学组成,特别是氯和有机物的含量等决定. 当处于高温并有氯源存在时,原始材料(例如废弃物)中的有机物通过热解和氯化反应能生成大量的CAHs[4]. 目前,人们开发了多种破坏CAHs的方法,如电化学法[5]、生物降解法[6 − 7]、光催化法[8]、吸附法[9]、超临界水氧化法[10]、热解法[11]及催化氧化法等. 其中,催化氧化技术备受关注,并取得了一定的研究成果. 催化氧化技术具有反应条件温和、能耗低、效率高、无二次污染、适用范围广等优点[12 − 14]. 本文综述了近年来在焚烧源中氯代芳构化合物催化氧化领域取得的研究成果,主要涵盖催化剂、催化氧化机制、催化剂失活与再生等方面的内容.
烟气中氯代芳构化合物催化氧化的研究进展
Research progress on the catalytic oxidation of chlorinated aromatic hydrocarbons in flue gas
-
摘要: 焚烧是固体废物处理的重要方式,但由此产生的烟气中含有氯代芳构化合物(chlorinated aromatic hydrocarbons,CAHs),对环境和健康构成威胁. 催化氧化技术因其高去除率、低能耗、低二次污染等优点被认为是去除烟气中CAHs最有效的方法之一. 本文系统介绍了常见的催化剂种类,包括贵金属催化剂、过渡金属氧化物催化剂和分子筛催化剂,并比较了它们的优缺点. 同时,深入探讨了催化氧化反应的机制、催化剂失活原因和再生方法,并强调了催化剂的组分、载体、结构和制备方法等对催化剂活性的重要影响. 最后,根据文献研究,对CAHs的催化氧化进行了展望. 未来研究应进一步优化催化剂设计,提高反应效率,并将其应用于实际焚烧烟气治理.
-
关键词:
- 催化氧化 /
- 氯代芳构化合物(CAHs) /
- 催化剂 /
- 催化氧化机制 /
- 催化失活.
Abstract: Incineration is an important method for solid waste treatment, but the resulting flue gas contains Chlorinated aromatic hydrocarbons (CAHs), which pose a threat to both the environment and human health. Catalytic oxidation technology is recognized as one of the most effective methods for removing CAHs due to its high removal rate, low energy consumption, and minimal secondary pollution. This paper systematically introduces common catalyst types, including noble metal catalysts, transition metal oxide catalysts, and molecular sieve catalysts, and compares their respective advantages and drawbacks. Furthermore, the mechanism of catalytic oxidation reactions, causes of catalyst deactivation, and regeneration methods are discussed, with an emphasis on the significant impact of catalyst components, structures, supports, and preparation methods on catalyst activity. Finally, based on existing research, the prospects of catalytic oxidation of CAHs are examined. Future research should focus on optimizing catalyst design, enhancing reaction efficiency, and applying the technique to the practical treatment of incineration flue gas. -
图 2 催化CAHs氧化的动力学模型
Figure 2. Kinetic models of catalytic CAHs oxidations[123]
表 1 贵金属催化剂用于催化氧化CAHs的研究
Table 1. Research on noble metal catalysts for catalytic oxidation of CAHs
催化剂
CatalystsCAHs污染物
CAHs pollutants转化温度/℃
Conversion temperature转化率/%
Conversion efficiency参考文献
References钌基催化剂 Ru/TiO2 CB 287 90 [15] Ru/Fe1Mn2 197 90 [16] Ru-CeO2,Ru/CeO2-r 250—280 90 [21 − 22] 0.4Ru-1.0Ce/TiO2,Ru/Ti–CeO2 180—250 90—95 [18, 23] Ru/TiCeOx o-DCB 305 90 [20] 铂基催化剂 Pt/γ-Al2O3 CB 210—225 50 [24 − 25] 2Pt- Al-PILC 321 50 [26] PtHFAU(5) 350 95 [27] Pt/CeO-ZrO2 350 97 [28] Pt-110Mn 290 90 [19] 钯基催化剂 Pd/Co-HMOR o-DCB 500 100 [17] 表 2 过渡金属氧化物催化剂用于催化氧化CAHs的研究
Table 2. Research on transition metal catalysts for catalytic oxidation of CAHs
催化剂
CatalystsCAHs污染物
CAHs
pollutants转化温度/℃
Conversion
temperature转化率/%
Conversion
efficiency参考文献
References铈基催化剂 VOx/CeO2 CB 307—325 90 [36, 38] HSiW/CeO2 283 90 [39] MnOx-CeO2,CuO-MnOx-CeO2 236—336 90—100 [40 − 45] ACeOx (A = Co, Cu, Fe, Mn, Zr) 328 99 [46] 2.4W/CeO2 CB/o-DCB 339 90 [31] 铈基催化剂 Co3O4-CeO2 1,2,4-TCB 300 96 [47] FexOy-CeO2 HCB 300 100 [48] 钛基催化剂 V2O5/TiO2,TiV10,TiV10Mo,TiV10W,
V2O5-WOx/TiO2CB 247—300 50—100 [49 − 53] CeMn/Ti-400, Ce0.5Ti0.5 198—375 90 [54 − 55] MnOx/TiO2 150—296 90—95 [56 − 57] V2O5/TiO2,V2O5/TiO2-SiO2 DCB 200—400 80—100 [58 − 65] Cr0.1Ti0.9 304 95 [66] MnCe/Ti 275 100 [67] V2O5/TiO2 1,3,5-TCB,1,2,3,4-TeCB,PeCB,HCB,2,3-DCDD,
2-MCDD300—400 25—85 [49, 58] V2O5-TiO2,V2O5-WO3/TiO2,Ce-VxOy/TiO2,
V2O5-CeO2/TiO2PCDD/Fs 180—280 73—98 [68 − 74] V2O5-WO3/TiO2 PCBs 300 98 [75] 锰基催化剂 Fe1Mn1 CB 197 90 [34] CM-R 388 90 [37] LaMnO3,La0.8Sr0.2MnO3,La0.8MnO3 291—410 90 [76] 30Cu/MnOx 290 90 [77] Co9Mn1 o-DCB 347 90 [29] CuO/MnxOy HCB 230 80 [78] Mn-Ce-Mg/Al2O3 315 90 [79] MnxCey/Al2O3 338 100 [80] 铁基催化剂 LaMn0.8Fe0.2O3 CB 500 90 [76] Mn-Ce-Fe DCB 350 98 [81] CaCO3/α-Fe2O3 450 100 [82] CaO/α-Fe2O3 HCB 300 99 [83 − 84] FexOy 300 100 [85] MgFe2O4/Fe3O4 300 100 [86] NiFe2O4 PCBs 300 96 [87] 其他催化剂 Mn-Ce-Zr CB 326 90 [30] CoCr 242 90 [32] LaMn0.8Al0.2O3 380 90 [76] Mn(x)-CeLa 229—279 90 [35, 88] CrCe/Ti-PILC,CrCe(5:1)/AlFe-PILC,MnCe(9:1)/AlZr-PILC 250—290 100 [89 − 91] Mn-Co-Ce-cordierite 325 90 [92] WO3-Nb2O5 350 90 [93] Co3O4-A 310 90 [94] V2O5/TiO2-CNTs,MnOx/TiO2-CNTs,CuOx/CNTs CB,DCB, PCDD/Fs 150—320 78—95 [95 − 98] CeSn/Ti6Zr4Ox o-DCB 343 90 [33] 15CM/TS-1.5 360 100 [99] Fe/AC PCBs 350 100 [100] CuAl2O4, CuxMg1−xAl2O4 HCB,OCDD 300—350 85—99 [101 − 102] γ-Al2O3,La2O3 (MgO,CaO,BaO,La2O3,CeO2,MnO2,Fe2O3,Co3O4)/Al2O3 HCB 300 30—100 [103 − 104] 表 3 分子筛催化剂用于催化氧化CAHs的研究
Table 3. Research on molecular sieve metal catalysts for catalytic oxidation of CAHs
催化剂
CatalystsCAHs污染物
CAHs pollutants转化温度/℃
Conversion temperature转化率/%
Conversion efficiency参考文献
ReferencesCuCe(6:1)/MCM-41 CB 262 100 [105] MnCo (6:1)/MCM-41 270 90 [106] Mn3/KIT-6 211 90 [107] Ce3-Co6/HMS 440 90 [108] Pt0.5Ru0.5/m-HZ 234 50 [110] MnxCe1-xO2/HZSM-5,Mn0.8Ce0.2O2/HZSM-5 230 90 [14, 111] CNH 222 90 [112] Pd/ZSM-5(25) o-DCB 474 90 [109] -
[1] TANG J, MA S T, LIU R R, et al. The pollution profiles and human exposure risks of chlorinated and brominated PAHs in indoor dusts from e-waste dismantling workshops: Comparison of GC-MS, GC-MS/MS and GC×GC-MS/MS determination methods[J]. Journal of Hazardous Materials, 2020, 394: 122573. doi: 10.1016/j.jhazmat.2020.122573 [2] 刘国瑞, 郑明辉. 非故意产生的持久性有机污染物的生成和排放研究进展[J]. 中国科学:化学, 2013, 43(3): 265-278. doi: 10.1360/032013-12 LIU G R, ZHENG M H. Progress in the studies associated with formation and emission of unintentionally produced persistent organic pollutants[J]. Scientia Sinica Chimica), 2013, 43(3): 265-278 (in Chinese). doi: 10.1360/032013-12
[3] AKAI S, HAYAKAWA K, TAKATSUKI H, et al. Dioxin-like PCBs released from waste incineration and their deposition flux[J]. Environmental Science & Technology, 2001, 35(18): 3601-3607. [4] KATAMI T, YASUHARA A, OKUDA T, et al. Formation of PCDDs, PCDFs, and coplanar PCBs from polyvinyl chloride during combustion in an incinerator[J]. Environmental Science & Technology, 2002, 36(6): 1320-1324. [5] YIN J J, ZHANG W, ZHANG D M, et al. Electrochemical degradation of chlorobenzene on conductive-diamond electrode[J]. Diamond and Related Materials, 2016, 68: 71-77. doi: 10.1016/j.diamond.2016.06.005 [6] CHENG Z W, LI C, KENNES C, et al. Improved biodegradation potential of chlorobenzene by a mixed fungal-bacterial consortium[J]. International Biodeterioration & Biodegradation, 2017, 123: 276-285. [7] WANG B, ZHANG C P, LI S Y, et al. An approach to biodegradation of chlorobenzenes: Combination of Typha angustifolia and bacterial effects on hexachlorobenzene degradation in water[J]. Water Science and Technology, 2016, 74(6): 1409-1416. doi: 10.2166/wst.2016.313 [8] NAGARAJU P, PUTTAIAH S H, WANTALA K, et al. Preparation of modified ZnO nanoparticles for photocatalytic degradation of chlorobenzene[J]. Applied Water Science, 2020, 10(6): 137. doi: 10.1007/s13201-020-01228-w [9] ZHU Q, YAN J R, DAI Q G, et al. Ethylene glycol assisted synthesis of hierarchical Fe-ZSM-5 nanorods assembled microsphere for adsorption Fenton degradation of chlorobenzene[J]. Journal of Hazardous Materials, 2020, 385: 121581. doi: 10.1016/j.jhazmat.2019.121581 [10] SVISHCHEV I M, PLUGATYR A. Supercritical water oxidation of o-dichlorobenzene: Degradation studies and simulation insights[J]. The Journal of Supercritical Fluids, 2006, 37(1): 94-101. doi: 10.1016/j.supflu.2005.08.005 [11] VIN N, BATTIN-LECLERC F, Le GALL H, et al. A study of chlorobenzene pyrolysis[J]. Proceedings of the Combustion Institute, 2019, 37(1): 399-407. doi: 10.1016/j.proci.2018.05.067 [12] EVERAERT K, BAEYENS J. Catalytic combustion of volatile organic compounds[J]. Journal of Hazardous Materials, 2004, 109(1/2/3): 113-139. [13] FINOCCHIO E, BUSCA G, NOTARO M. A review of catalytic processes for the destruction of PCDD and PCDF from waste gases[J]. Applied Catalysis B:Environmental, 2006, 62(1/2): 12-20. [14] WENG X L, SUN P F, LONG Y, et al. Catalytic oxidation of chlorobenzene over Mn xCe1– xO2/HZSM-5 catalysts: A study with practical implications[J]. Environmental Science & Technology, 2017, 51(14): 8057-8066. [15] LIU X L, CHEN L, ZHU T Y, et al. Catalytic oxidation of chlorobenzene over noble metals (Pd, Pt, Ru, Rh) and the distributions of polychlorinated by-products[J]. Journal of Hazardous Materials, 2019, 363: 90-98. doi: 10.1016/j.jhazmat.2018.09.074 [16] WANG G, WANG Y, QIN L B, et al. Efficient and stable degradation of chlorobenzene over a porous iron-manganese oxide supported ruthenium catalyst[J]. Catalysis Science & Technology, 2020, 10(21): 7203-7216. [17] CANO M, GUARÍN F, ARISTIZÁBAL B, et al. Catalytic activity and stability of Pd/Co catalysts in simultaneous selective catalytic reduction of NOx with methane and oxidation of o-dichlorobenzene[J]. Catalysis Today, 2017, 296: 105-117. doi: 10.1016/j.cattod.2017.05.049 [18] LIANG W J, ZHU Y X, REN S D, et al. Catalytic combustion of chlorobenzene at low temperature over Ru-Ce/TiO2: High activity and high selectivity[J]. Applied Catalysis A:General, 2021, 623: 118257. doi: 10.1016/j.apcata.2021.118257 [19] CHEN G, CAI Y P, ZHANG H, et al. Pt and Mo co-decorated MnO2 nanorods with superior resistance to H2O, sintering, and HCl for catalytic oxidation of chlorobenzene[J]. Environmental Science & Technology, 2021, 55(20): 14204-14214. [20] WU S L, ZHAO H J, DONG F, et al. Construction of superhydrophobic Ru/TiCeO x catalysts for the enhanced water resistance of o-dichlorobenzene catalytic combustion[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2610-2621. [21] DAI Q G, BAI S X, WANG Z Y, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts[J]. Applied Catalysis B:Environmental, 2012, 126: 64-75. doi: 10.1016/j.apcatb.2012.07.008 [22] HUANG H, DAI Q G, WANG X Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B:Environmental, 2014, 158/159: 96-105. doi: 10.1016/j.apcatb.2014.01.062 [23] DAI Q G, BAI S X, WANG J W, et al. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene[J]. Applied Catalysis B:Environmental, 2013, 142/143: 222-233. doi: 10.1016/j.apcatb.2013.05.026 [24] van den BRINK R W, MULDER P, LOUW R. Catalytic combustion of chlorobenzene on Pt/γ-Al2O3 in the presence of aliphatic hydrocarbons[J]. Catalysis Today, 1999, 54(1): 101-106. doi: 10.1016/S0920-5861(99)00172-8 [25] van den BRINK R W, LOUW R, MULDER P. Increased combustion rate of chlorobenzene on Pt/γ-Al2O3 in binary mixtures with hydrocarbons and with carbon monoxide[J]. Applied Catalysis B:Environmental, 2000, 25(4): 229-237. doi: 10.1016/S0926-3373(99)00137-X [26] AZNÁREZ A, DELAIGLE R, ELOY P, et al. Catalysts based on pillared clays for the oxidation of chlorobenzene[J]. Catalysis Today, 2015, 246: 15-27. doi: 10.1016/j.cattod.2014.07.024 [27] TARALUNGA M, MIJOIN J, MAGNOUX P. Catalytic destruction of chlorinated POPs—Catalytic oxidation of chlorobenzene over PtHFAU catalysts[J]. Applied Catalysis B:Environmental, 2005, 60(3/4): 163-171. [28] TOPKA P, DELAIGLE R, KALUŽA L, et al. Performance of platinum and gold catalysts supported on ceria-zirconia mixed oxide in the oxidation of chlorobenzene[J]. Catalysis Today, 2015, 253: 172-177. doi: 10.1016/j.cattod.2015.02.032 [29] CAI T, HUANG H, DENG W, et al. Catalytic combustion of 1, 2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts[J]. Applied Catalysis B:Environmental, 2015, 166/167: 393-405. doi: 10.1016/j.apcatb.2014.10.047 [30] LONG G Y, CHEN M X, LI Y J, et al. One-pot synthesis of monolithic Mn-Ce-Zr ternary mixed oxides catalyst for the catalytic combustion of chlorobenzene[J]. Chemical Engineering Journal, 2019, 360: 964-973. doi: 10.1016/j.cej.2018.07.091 [31] GU Y F, CAI T, GAO X H, et al. Catalytic combustion of chlorinated aromatics over WO x/CeO2 catalysts at low temperature[J]. Applied Catalysis B:Environmental, 2019, 248: 264-276. doi: 10.1016/j.apcatb.2018.12.055 [32] DENG W, TANG Q X, HUANG S S, et al. Low temperature catalytic combustion of chlorobenzene over cobalt based mixed oxides derived from layered double hydroxides[J]. Applied Catalysis B:Environmental, 2020, 278: 119336. doi: 10.1016/j.apcatb.2020.119336 [33] WU S L, ZHAO H J, TANG Z C, et al. Controlled synthesis of ordered mesoporous TiO2-ZrO2 supported CeSn oxides catalyst for the elimination of 1, 2-dichlorobenzene[J]. Microporous and Mesoporous Materials, 2020, 302: 110214. doi: 10.1016/j.micromeso.2020.110214 [34] WANG Y, WANG G, DENG W, et al. Study on the structure-activity relationship of Fe-Mn oxide catalysts for chlorobenzene catalytic combustion[J]. Chemical Engineering Journal, 2020, 395: 125172. doi: 10.1016/j.cej.2020.125172 [35] DAI Y, WANG X Y, LI D, et al. Catalytic combustion of chlorobenzene over Mn-Ce-La-O mixed oxide catalysts[J]. Journal of Hazardous Materials, 2011, 188(1/2/3): 132-139. [36] HUANG H, GU Y F, ZHAO J, et al. Catalytic combustion of chlorobenzene over VO x/CeO2 catalysts[J]. Journal of Catalysis, 2015, 326: 54-68. doi: 10.1016/j.jcat.2015.02.016 [37] WANG Y, DENG W, WANG Y F, et al. A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce-Mn oxides[J]. Molecular Catalysis, 2018, 459: 61-70. doi: 10.1016/j.mcat.2018.08.022 [38] SHI Q, LONG H M, CHUN T J, et al. Catalytic combustion of chlorobenzene with VOx/CeO2 catalysts: Influence of catalyst synthesis method[J]. International Journal of Chemical Reactor Engineering, 2019, 17(12): 20190084. [39] ZHANG X J, WEI Y H, SONG Z X, et al. Silicotungstic acid modified CeO2 catalyst with high stability for the catalytic combustion of chlorobenzene[J]. Chemosphere, 2021, 263: 128129. doi: 10.1016/j.chemosphere.2020.128129 [40] SONG Z J, YU S X, LIU H, et al. Carbon/chlorinate deposition on MnO x-CeO2 catalyst in chlorobenzene combustion: The effect of SCR flue gas[J]. Chemical Engineering Journal, 2022, 433: 133552. doi: 10.1016/j.cej.2021.133552 [41] WU L Y, HE F, LUO J Q, et al. Synthesis of three-dimensional ordered mesoporous MnO x/CeO2 bimetal oxides for the catalytic combustion of chlorobenzene[J]. RSC Advances, 2017, 7(43): 26952-26959. doi: 10.1039/C7RA02299A [42] WANG X Y, KANG Q, LI D. Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Applied Catalysis B:Environmental, 2009, 86(3/4): 166-175. [43] WANG X Y, KANG Q, LI D. Low-temperature catalytic combustion of chlorobenzene over MnO x-CeO2 mixed oxide catalysts[J]. Catalysis Communications, 2008, 9(13): 2158-2162. doi: 10.1016/j.catcom.2008.04.021 [44] HE C, MEN G S, YU Y K, et al. Chlorobenzene destruction over mesostructured CuO and MnOx co-modified CeO2 catalyst: Activity and activation route[J]. Water, Air, & Soil Pollution, 2015, 226(3): 57. [45] HE C, YU Y K, SHEN Q, et al. Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnO x-CeO2 catalysts for chlorobenzene destruction[J]. Applied Surface Science, 2014, 297: 59-69. doi: 10.1016/j.apsusc.2014.01.076 [46] HE C, XU B T, SHI J W, et al. Catalytic destruction of chlorobenzene over mesoporous ACeO x (a = Co, Cu, Fe, Mn, or Zr) composites prepared by inorganic metal precursor spontaneous precipitation[J]. Fuel Processing Technology, 2015, 130: 179-187. doi: 10.1016/j.fuproc.2014.10.008 [47] LIN S J, SU G J, ZHENG M H, et al. Synthesis of flower-like Co3O4-CeO2 composite oxide and its application to catalytic degradation of 1, 2, 4-trichlorobenzene[J]. Applied Catalysis B:Environmental, 2012, 123/124: 440-447. doi: 10.1016/j.apcatb.2012.05.011 [48] JIA M K, SU G J, ZHENG M H, et al. Synthesis of a magnetic micro/nano Fe xO y-CeO2 composite and its application for degradation of hexachlorobenzene[J]. Science China Chemistry, 2010, 53(6): 1266-1272. doi: 10.1007/s11426-010-3164-3 [49] WANG J, WANG X, LIU X L, et al. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: The effects of chlorine substituents[J]. Catalysis Today, 2015, 241: 92-99. doi: 10.1016/j.cattod.2014.04.002 [50] WANG J, WANG X, LIU X L, et al. Kinetics and mechanism study on catalytic oxidation of chlorobenzene over V2O5/TiO2 catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2015, 402: 1-9. doi: 10.1016/j.molcata.2015.03.003 [51] BERTINCHAMPS F, POLEUNIS C, GRÉGOIRE C, et al. Elucidation of deactivation or resistance mechanisms of CrOx, VOx and MnOx supported phases in the total oxidation of chlorobenzene via ToF-SIMS and XPS analyses[J]. Surface and Interface Analysis, 2008, 40(3/4): 231-236. [52] BERTINCHAMPS F, GRÉGOIRE C, GAIGNEAUX E M. Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics[J]. Applied Catalysis B:Environmental, 2006, 66(1/2): 1-9. [53] KHALEEL A, AL-NAYLI A. Supported and mixed oxide catalysts based on iron and titanium for the oxidative decomposition of chlorobenzene[J]. Applied Catalysis B:Environmental, 2008, 80(1/2): 176-184. [54] HE F, CHEN Y, ZHAO P, et al. Effect of calcination temperature on the structure and performance of CeO x-MnO x/TiO2 nanoparticles for the catalytic combustion of chlorobenzene[J]. Journal of Nanoparticle Research, 2016, 18(5): 119. doi: 10.1007/s11051-016-3428-8 [55] DENG W, DAI Q G, LAO Y J, et al. Low temperature catalytic combustion of 1, 2-dichlorobenzene over CeO2-TiO2 mixed oxide catalysts[J]. Applied Catalysis B:Environmental, 2016, 181: 848-861. doi: 10.1016/j.apcatb.2015.07.053 [56] TIAN W, FAN X Y, YANG H S, et al. Preparation of MnO x/TiO2 composites and their properties for catalytic oxidation of chlorobenzene[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 887-891. [57] LUO J Q, HE F, LIU S T. Catalytic combustion of chlorobenzene over core-shell Mn/TiO2 catalysts[J]. Journal of Porous Materials, 2017, 24(3): 821-828. doi: 10.1007/s10934-016-0321-x [58] LEE J E, JURNG J. Catalytic conversions of polychlorinated benzenes and dioxins with low-chlorine using V2O5/TiO2[J]. Catalysis Letters, 2008, 120(3): 294-298. [59] LICHTENBERGER J. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts[J]. Journal of Catalysis, 2004, 223(2): 296-308. doi: 10.1016/j.jcat.2004.01.032 [60] LICHTENBERGER J, AMIRIDIS M D. Deactivation of V2O5/TiO2 catalysts during the oxidation of meta-dichlorobenzene in the presence of methyl-naphthalene[J]. Catalysis Today, 2004, 98(3): 447-453. doi: 10.1016/j.cattod.2004.08.001 [61] HETRICK C E, PATCAS F, AMIRIDIS M D. Effect of water on the oxidation of dichlorobenzene over V2O5/TiO2 catalysts[J]. Applied Catalysis B:Environmental, 2011, 101(3/4): 622-628. [62] CHIN S, JURNG J, LEE J H, et al. Catalytic conversion of 1, 2-dichlorobenzene using V2O5/TiO2 catalysts by a thermal decomposition process[J]. Chemosphere, 2009, 75(9): 1206-1209. doi: 10.1016/j.chemosphere.2009.02.015 [63] JUNG K Y, JUNG Y R, JEON J K, et al. Preparation of mesoporous V2O5/TiO2 via spray pyrolysis and its application to the catalytic conversion of 1, 2-dichlorobenzene[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(1): 144-148. doi: 10.1016/j.jiec.2010.12.013 [64] CHIN S, PARK E, KIM M, et al. Effect of the support material (TiO2) synthesis conditions in chemical vapor condensation on the catalytic oxidation for 1, 2-dichlorobenzene over V2O5/TiO2[J]. Powder Technology, 2012, 217: 388-393. doi: 10.1016/j.powtec.2011.10.055 [65] CHEN N Y, YANG S C, LIU M C, et al. Pellet vanadia catalysts for oxidative destruction of 1, 2-dichlorobenzene: Roles of the grafted TiO2 in vanadia morphology and catalytic reaction[J]. Catalysis Surveys from Asia, 2015, 19(1): 38-56. doi: 10.1007/s10563-015-9184-4 [66] SUN W, GONG B W, PAN J, et al. Catalytic combustion of CVOCs over Cr xTi1- x oxide catalysts[J]. Journal of Catalysis, 2020, 391: 132-144. doi: 10.1016/j.jcat.2020.08.007 [67] LIN F, WANG Q L, HUANG X N, et al. Investigation of chlorine-poisoning mechanism of MnO x/TiO2 and MnO x-CeO2/TiO2 catalysts during o-DCBz catalytic decomposition: Experiment and first-principles calculation[J]. Journal of Environmental Management, 2021, 298: 113454. doi: 10.1016/j.jenvman.2021.113454 [68] JI S S, LI X D, REN Y, et al. Ozone-enhanced oxidation of PCDD/Fs over V2O5-TiO2-based catalyst[J]. Chemosphere, 2013, 92(3): 265-272. doi: 10.1016/j.chemosphere.2013.01.087 [69] DEBECKER D P, DELAIGLE R, HUNG P C, et al. Evaluation of PCDD/F oxidation catalysts: Confronting studies on model molecules with tests on PCDD/F-containing gas stream[J]. Chemosphere, 2011, 82(9): 1337-1342. doi: 10.1016/j.chemosphere.2010.12.007 [70] YU M F, LIN X Q, LI X D, et al. Catalytic destruction of PCDD/Fs over vanadium oxide-based catalysts[J]. Environmental Science and Pollution Research, 2016, 23(16): 16249-16258. doi: 10.1007/s11356-016-6807-x [71] WEBER R, SAKURAI T, HAGENMAIER H. Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts[J]. Applied Catalysis B:Environmental, 1999, 20(4): 249-256. doi: 10.1016/S0926-3373(98)00115-5 [72] YANG C C, CHANG S H, HONG B Z, et al. Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5-WO3/TiO2-based catalysts[J]. Chemosphere, 2008, 73(6): 890-895. doi: 10.1016/j.chemosphere.2008.07.027 [73] CHEN Y, WU Q, LIU K R. Dual degradation of gaseous 1, 2-dichlorobenzene and PCDD/Fs using Ce doped V xO y/TiO2 immobilized on cordierite[J]. Chemosphere, 2016, 154: 472-481. doi: 10.1016/j.chemosphere.2016.04.012 [74] YU M F, LIN X Q, YAN M, et al. Low temperature destruction of PCDD/Fs over V2O5-CeO2/TiO2 catalyst with ozone[J]. Environmental Science and Pollution Research, 2016, 23(17): 17563-17570. doi: 10.1007/s11356-016-6955-z [75] WEBER R, SAKURAI T. Low temperature decomposition of PCB by TiO2-based V2O5/WO3 catalyst: Evaluation of the relevance of PCDF formation and insights into the first step of oxidative destruction of chlorinated aromatics[J]. Applied Catalysis B:Environmental, 2001, 34(2): 113-127. doi: 10.1016/S0926-3373(01)00211-9 [76] LU Y J, DAI Q G, WANG X Y. Catalytic combustion of chlorobenzene on modified LaMnO3 catalysts[J]. Catalysis Communications, 2014, 54: 114-117. doi: 10.1016/j.catcom.2014.05.018 [77] CHEN X, HE F, LIU S T. CuO/MnO x composites obtained from Mn-MIL-100 precursors as efficient catalysts for the catalytic combustion of chlorobenzene[J]. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130(2): 1063-1076. doi: 10.1007/s11144-020-01816-6 [78] YANG Y, HUANG J, ZHANG S Z, et al. Catalytic removal of gaseous HCBz on Cu doped OMS: Effect of Cu location on catalytic performance[J]. Applied Catalysis B:Environmental, 2014, 150/151: 167-178. doi: 10.1016/j.apcatb.2013.11.041 [79] WU M, WANG X Y, DAI Q G, et al. Catalytic combustion of chlorobenzene over Mn-Ce/Al2O3 catalyst promoted by Mg[J]. Catalysis Communications, 2010, 11(12): 1022-1025. doi: 10.1016/j.catcom.2010.04.011 [80] WU M, WANG X Y, DAI Q G, et al. Low temperature catalytic combustion of chlorobenzene over Mn-Ce-O/γ-Al2O3 mixed oxides catalyst[J]. Catalysis Today, 2010, 158: 336-342. doi: 10.1016/j.cattod.2010.04.006 [81] TANG A D, HU L Q, YANG X H, et al. Promoting effect of the addition of Ce and Fe on manganese oxide catalyst for 1, 2-dichlorobenzene catalytic combustion[J]. Catalysis Communications, 2016, 82: 41-45. doi: 10.1016/j.catcom.2016.04.015 [82] MA X D, SUN Q, FENG X, et al. Catalytic oxidation of 1, 2-dichlorobenzene over CaCO3/α-Fe2O3 nanocomposite catalysts[J]. Applied Catalysis A:General, 2013, 450: 143-151. doi: 10.1016/j.apcata.2012.10.019 [83] MA X D, ZHENG M H, LIU W B, et al. Synergic effect of calcium oxide and iron(Ⅲ) oxide on the dechlorination of hexachlorobenzene[J]. Chemosphere, 2005, 60(6): 796-801. doi: 10.1016/j.chemosphere.2005.04.021 [84] MA X D, SUN H W, HE H, et al. Competitive reaction during decomposition of hexachlorobenzene over ultrafine Ca-Fe composite oxide catalyst[J]. Catalysis Letters, 2007, 119(1): 142-147. [85] JIA M K, SU G J, ZHENG M H, et al. Development of self-assembled 3D Fe xO y micro/nano materials for application in hexachlorobenzene degradation[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(3): 2100-2106. doi: 10.1166/jnn.2011.3121 [86] SU G J, LIU Y X, HUANG L Y, et al. Synthesis of hierarchical Mg-doped Fe3O4 micro/nano materials for the decomposition of hexachlorobenzene[J]. Chemosphere, 2014, 99: 216-223. doi: 10.1016/j.chemosphere.2013.10.090 [87] HUANG L Y, SU G J, ZHANG A Q, et al. Degradation of polychlorinated biphenyls using mesoporous iron-based spinels[J]. Journal of Hazardous Materials, 2013, 261: 451-462. doi: 10.1016/j.jhazmat.2013.07.064 [88] WANG X Y, RAN L, DAI Y, et al. Removal of Cl adsorbed on Mn-Ce-La solid solution catalysts during CVOC combustion[J]. Journal of Colloid and Interface Science, 2014, 426: 324-332. doi: 10.1016/j.jcis.2013.10.007 [89] FENG B B, WEI Y X, QIU Y N, et al. Ce-modified AlZr pillared clays supported-transition metals for catalytic combustion of chlorobenzene[J]. Journal of Rare Earths, 2018, 36(11): 1169-1174. doi: 10.1016/j.jre.2018.03.026 [90] QIU Y N, YE N, SITU D N, et al. Study of catalytic combustion of chlorobenzene and temperature programmed reactions over CrCeOx/AlFe pillared clay catalysts[J]. Materials, 2019, 12(5): 728. doi: 10.3390/ma12050728 [91] ZUO S F, DING M L, TONG J, et al. Study on the preparation and characterization of a titanium-pillared clay-supported CrCe catalyst and its application to the degradation of a low concentration of chlorobenzene[J]. Applied Clay Science, 2015, 105/106: 118-123. doi: 10.1016/j.clay.2014.12.033 [92] KAN J W, DENG L, LI B, et al. Performance of co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation[J]. Applied Catalysis A:General, 2017, 530: 21-29. doi: 10.1016/j.apcata.2016.11.013 [93] TAO H Y, LI J, MA Q Y, et al. Synthesis of W-Nb-O solid acid for catalytic combustion of low-concentration monochlorobenzene[J]. Chemical Engineering Journal, 2020, 382: 123045. doi: 10.1016/j.cej.2019.123045 [94] LI Y, CHEN J, HU Z Y, et al. A facile method to synthesize Co3O4 catalyst for efficient chlorobenzene combustion[J]. ChemistrySelect, 2022, 7(17): e202200481. doi: 10.1002/slct.202200481 [95] NIE A M, YANG H S, LI Q A, et al. Catalytic oxidation of chlorobenzene over V2O5/TiO2–carbon nanotubes composites[J]. Industrial & Engineering Chemistry Research, 2011, 50(17): 9944-9948. [96] TIAN W, YANG H S, FAN X Y, et al. Low-temperature catalytic oxidation of chlorobenzene over MnO X/TiO2-CNTs nano-composites prepared by wet synthesis methods[J]. Catalysis Communications, 2010, 11(15): 1185-1188. doi: 10.1016/j.catcom.2010.06.010 [97] DU C C, WANG Q L, PENG Y Q, et al. Catalytic oxidation of 1, 2-DCBz over V2O5/TiO2-CNTs: Effect of CNT diameter and surface functional groups[J]. Environmental Science and Pollution Research, 2017, 24(5): 4894-4901. doi: 10.1007/s11356-016-8075-1 [98] WANG Q L, HUNG P C, LU S Y, et al. Catalytic decomposition of gaseous PCDD/Fs over V2O5/TiO2-CNTs catalyst: Effect of NO and NH3 addition[J]. Chemosphere, 2016, 159: 132-137. doi: 10.1016/j.chemosphere.2016.05.072 [99] ZHAO H J, HAN W L, DONG F, et al. Highly-efficient catalytic combustion performance of 1, 2-dichlorobenzene over mesoporous TiO2-SiO2 supported CeMn oxides: The effect of acid sites and redox sites[J]. Journal of Industrial and Engineering Chemistry, 2018, 64: 194-205. doi: 10.1016/j.jiec.2018.03.016 [100] SUN Y F, TAKAOKA M, TAKEDA N, et al. Kinetics on the decomposition of polychlorinated biphenyls with activated carbon-supported iron[J]. Chemosphere, 2006, 65(2): 183-189. doi: 10.1016/j.chemosphere.2006.03.009 [101] FAN Y, LU X B, NI Y W, et al. Destruction of polychlorinated aromatic compounds by spinel-type complex oxides[J]. Environmental Science & Technology, 2010, 44(8): 3079-3084. [102] FAN Y, LU X B, NI Y W, et al. Catalytic destruction of chlorinated aromatic pollutants over mesoporous Cu xMg1− xAl2O4 spinel oxides[J]. Applied Catalysis B:Environmental, 2011, 101(3/4): 606-612. [103] ZHANG L F, ZHENG M H, LIU W B, et al. A method for decomposition of hexachlorobenzene by gamma-alumina[J]. Journal of Hazardous Materials, 2008, 150(3): 831-834. doi: 10.1016/j.jhazmat.2007.10.037 [104] ZHANG L F, ZHENG M H, ZHANG B, et al. Decomposition of hexachlorobenzene over Al2O3 supported metal oxide catalysts[J]. Journal of Environmental Sciences, 2008, 20(12): 1523-1526. doi: 10.1016/S1001-0742(08)62560-7 [105] ZHENG J, CHEN Z, FANG J F, et al. MCM-41 supported nano-sized CuO-CeO2 for catalytic combustion of chlorobenzene[J]. Journal of Rare Earths, 2020, 38(9): 933-940. doi: 10.1016/j.jre.2019.06.005 [106] CHENG Z, LI J R, YANG P, et al. Preparation of MnCo/MCM-41 catalysts with high performance for chlorobenzene combustion[J]. Chinese Journal of Catalysis, 2018, 39(4): 849-856. doi: 10.1016/S1872-2067(17)62950-4 [107] HE F, LUO J Q, LIU S T. Novel metal loaded KIT-6 catalysts and their applications in the catalytic combustion of chlorobenzene[J]. Chemical Engineering Journal, 2016, 294: 362-370. doi: 10.1016/j.cej.2016.02.068 [108] ZHAO W, CHENG J, WANG L N, et al. Catalytic combustion of chlorobenzene on the Ln modified Co/HMS[J]. Applied Catalysis B:Environmental, 2012, 127: 246-254. doi: 10.1016/j.apcatb.2012.08.019 [109] LI N, CHENG J, XING X, et al. Distribution and formation mechanisms of polychlorinated organic by-products upon the catalytic oxidation of 1, 2-dichlorobenzene with palladium-loaded catalysts[J]. Journal of Hazardous Materials, 2020, 393: 122412. doi: 10.1016/j.jhazmat.2020.122412 [110] WANG Y, CHEN Y, ZHANG L, et al. Total catalytic oxidation of chlorinated aromatics over bimetallic Pt-Ru supported on hierarchical HZSM-5 zeolite[J]. Microporous and Mesoporous Materials, 2020, 308: 110538. doi: 10.1016/j.micromeso.2020.110538 [111] SUN P F, WANG W L, DAI X X, et al. Mechanism study on catalytic oxidation of chlorobenzene over Mn xCe1- xO2/H-ZSM5 catalysts under dry and humid conditions[J]. Applied Catalysis B:Environmental, 2016, 198: 389-397. doi: 10.1016/j.apcatb.2016.05.076 [112] SUN P F, CHEN J K, ZAI S Y, et al. Regeneration mechanism of a deactivated zeolite-supported catalyst for the combustion of chlorinated volatile organic compounds[J]. Catalysis Science & Technology, 2021, 11(3): 923-933. [113] van den BRINK R W, KRZAN M, FEIJEN-JEURISSEN M M R, et al. The role of the support and dispersion in the catalytic combustion of chlorobenzene on noble metal based catalysts[J]. Applied Catalysis B:Environmental, 2000, 24(3/4): 255-264. [114] DU C C, LU S Y, WANG Q L, et al. A review on catalytic oxidation of chloroaromatics from flue gas[J]. Chemical Engineering Journal, 2018, 334: 519-544. doi: 10.1016/j.cej.2017.09.018 [115] GU Y F, SHAO S J, SUN W, et al. The oxidation of chlorinated organic compounds over W-modified Pt/CeO2 catalysts[J]. Journal of Catalysis, 2019, 380: 375-386. doi: 10.1016/j.jcat.2019.06.041 [116] SHI Q, DING L, LONG H M, et al. Low-temperature catalytic combustion of chlorobenzene over CeOx-VOx/TiO2-graphene oxide catalysts[J]. Catalysis Letters, 2022, 152(12): 3617-3631. doi: 10.1007/s10562-022-03932-5 [117] JIA H Q, XING Y, ZHANG L G, et al. Progress of catalytic oxidation of typical chlorined volatile organic compounds (CVOCs): A review[J]. Science of the Total Environment, 2023, 865: 161063. doi: 10.1016/j.scitotenv.2022.161063 [118] BURGOS N, PAULIS M, MIRARI ANTXUSTEGI M, et al. Deep oxidation of VOC mixtures with platinum supported on Al2O3/Al monoliths[J]. Applied Catalysis B:Environmental, 2002, 38(4): 251-258. doi: 10.1016/S0926-3373(01)00294-6 [119] SU Y, FU K X, PANG C H, et al. Recent advances of chlorinated volatile organic compounds' oxidation catalyzed by multiple catalysts: Reasonable adjustment of acidity and redox properties[J]. Environmental Science & Technology, 2022, 56(14): 9854-9871. [120] ZHANG Z X, JIANG Z, SHANGGUAN W F. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review[J]. Catalysis Today, 2016, 264: 270-278. doi: 10.1016/j.cattod.2015.10.040 [121] DAI Y, WANG X Y, DAI Q G, et al. Effect of Ce and La on the structure and activity of MnO x catalyst in catalytic combustion of chlorobenzene[J]. Applied Catalysis B:Environmental, 2012, 111/112: 141-149. doi: 10.1016/j.apcatb.2011.09.028 [122] DAI X X, WANG X W, LONG Y P, et al. Efficient elimination of chlorinated organics on a phosphoric acid modified CeO2 catalyst: A hydrolytic destruction route[J]. Environmental Science & Technology, 2019, 53(21): 12697-12705. [123] KIM H S, KIM H J, KIM J H, et al. Noble-metal-based catalytic oxidation technology trends for volatile organic compound (VOC) removal[J]. Catalysts, 2022, 12(1): 63. doi: 10.3390/catal12010063 [124] de JONG V, CIEPLIK M K, LOUW R. Formation of dioxins in the catalytic combustion of chlorobenzene and a micropollutant-like mixture on Pt/gamma-Al2O3[J]. Environmental Science & Technology, 2004, 38(19): 5217-5223. [125] TARALUNGA M, INNOCENT B, MIJOIN J, et al. Catalytic combustion of benzofuran and of a benzofuran/1, 2-dichlorobenzene binary mixture over zeolite catalysts[J]. Applied Catalysis B:Environmental, 2007, 75(1/2): 139-146. [126] LIN F W, XIANG L, ZHANG Z M, et al. Comprehensive review on catalytic degradation of Cl-VOCs under the practical application conditions[J]. Critical Reviews in Environmental Science and Technology, 2020, 52: 311-355. [127] HASHEMIKIA S, MONTAZER M. Sodium hypophosphite and nano TiO2 inorganic catalysts along with citric acid on textile producing multi-functional properties[J]. Applied Catalysis A:General, 2012, 417/418: 200-208. doi: 10.1016/j.apcata.2011.12.041 [128] ZHANG Z, HUANG J, XIA H Q, et al. Chlorinated volatile organic compound oxidation over SO42−/Fe2O3 catalysts[J]. Journal of Catalysis, 2018, 360: 277-289. doi: 10.1016/j.jcat.2017.11.024 [129] YANG S, ZHAO H J, DONG F, et al. Highly efficient catalytic combustion of o-dichlorobenzene over three-dimensional ordered mesoporous cerium manganese bimetallic oxides: A new concept of chlorine removal mechanism[J]. Molecular Catalysis, 2019, 463: 119-129. doi: 10.1016/j.mcat.2018.12.006 [130] HASHIMOTO Y, UEMICHI Y, AYAME A. Low-temperature hydrodechlorination mechanism of chlorobenzenes over platinum-supported and palladium-supported alumina catalysts[J]. Applied Catalysis A:General, 2005, 287(1): 89-97. doi: 10.1016/j.apcata.2005.03.039 [131] HATJE U, HAGELSTEIN M, FÖRSTER H. XAS studies on the interaction of with PtY and PdY zeolites[J]. Studies in Surface Science and Catalysis, 1994, 84: 773-780. [132] van den BRINK R W, LOUW R, MULDER P. Formation of polychlorinated benzenes during the catalytic combustion of chlorobenzene using a Pt/γ-Al2O3 catalyst[J]. Applied Catalysis B:Environmental, 1998, 16(3): 219-226. doi: 10.1016/S0926-3373(97)00076-3 [133] YANG Y, HUANG J, WANG S W, et al. Catalytic removal of gaseous unintentional POPs on manganese oxide octahedral molecular sieves[J]. Applied Catalysis B:Environmental, 2013, 142/143: 568-578. doi: 10.1016/j.apcatb.2013.05.048 [134] HE F, JIAO Y M, WU L Y, et al. Enhancement mechanism of Sn on the catalytic performance of Cu/KIT-6 during the catalytic combustion of chlorobenzene[J]. Catalysis Science & Technology, 2019, 9(21): 6114-6123. [135] DAI Q G, BAI S X, WANG X Y, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts: Mechanism study[J]. Applied Catalysis B:Environmental, 2013, 129: 580-588. doi: 10.1016/j.apcatb.2012.10.006 [136] JI L J, CAO X, LU S Y, et al. Catalytic oxidation of PCDD/F on a V2O5-WO3/TiO2 catalyst: Effect of chlorinated benzenes and chlorinated phenols[J]. Journal of Hazardous Materials, 2018, 342: 220-230. doi: 10.1016/j.jhazmat.2017.07.020 [137] ZHU B W, LIM T T. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: Reactive sites, catalyst stability, particle aging, and regeneration[J]. Environmental Science & Technology, 2007, 41(21): 7523-7529. [138] BERTINCHAMPS F, ATTIANESE A, MESTDAGH M M, et al. Catalysts for chlorinated VOCs abatement: Multiple effects of water on the activity of VO x based catalysts for the combustion of chlorobenzene[J]. Catalysis Today, 2006, 112(1/2/3/4): 165-168.