[1] |
TANG J, MA S T, LIU R R, et al. The pollution profiles and human exposure risks of chlorinated and brominated PAHs in indoor dusts from e-waste dismantling workshops: Comparison of GC-MS, GC-MS/MS and GC×GC-MS/MS determination methods[J]. Journal of Hazardous Materials, 2020, 394: 122573. doi: 10.1016/j.jhazmat.2020.122573
|
[2] |
刘国瑞, 郑明辉. 非故意产生的持久性有机污染物的生成和排放研究进展[J]. 中国科学:化学, 2013, 43(3): 265-278. doi: 10.1360/032013-12
LIU G R, ZHENG M H. Progress in the studies associated with formation and emission of unintentionally produced persistent organic pollutants[J]. Scientia Sinica Chimica), 2013, 43(3): 265-278 (in Chinese). doi: 10.1360/032013-12
|
[3] |
AKAI S, HAYAKAWA K, TAKATSUKI H, et al. Dioxin-like PCBs released from waste incineration and their deposition flux[J]. Environmental Science & Technology, 2001, 35(18): 3601-3607.
|
[4] |
KATAMI T, YASUHARA A, OKUDA T, et al. Formation of PCDDs, PCDFs, and coplanar PCBs from polyvinyl chloride during combustion in an incinerator[J]. Environmental Science & Technology, 2002, 36(6): 1320-1324.
|
[5] |
YIN J J, ZHANG W, ZHANG D M, et al. Electrochemical degradation of chlorobenzene on conductive-diamond electrode[J]. Diamond and Related Materials, 2016, 68: 71-77. doi: 10.1016/j.diamond.2016.06.005
|
[6] |
CHENG Z W, LI C, KENNES C, et al. Improved biodegradation potential of chlorobenzene by a mixed fungal-bacterial consortium[J]. International Biodeterioration & Biodegradation, 2017, 123: 276-285.
|
[7] |
WANG B, ZHANG C P, LI S Y, et al. An approach to biodegradation of chlorobenzenes: Combination of Typha angustifolia and bacterial effects on hexachlorobenzene degradation in water[J]. Water Science and Technology, 2016, 74(6): 1409-1416. doi: 10.2166/wst.2016.313
|
[8] |
NAGARAJU P, PUTTAIAH S H, WANTALA K, et al. Preparation of modified ZnO nanoparticles for photocatalytic degradation of chlorobenzene[J]. Applied Water Science, 2020, 10(6): 137. doi: 10.1007/s13201-020-01228-w
|
[9] |
ZHU Q, YAN J R, DAI Q G, et al. Ethylene glycol assisted synthesis of hierarchical Fe-ZSM-5 nanorods assembled microsphere for adsorption Fenton degradation of chlorobenzene[J]. Journal of Hazardous Materials, 2020, 385: 121581. doi: 10.1016/j.jhazmat.2019.121581
|
[10] |
SVISHCHEV I M, PLUGATYR A. Supercritical water oxidation of o-dichlorobenzene: Degradation studies and simulation insights[J]. The Journal of Supercritical Fluids, 2006, 37(1): 94-101. doi: 10.1016/j.supflu.2005.08.005
|
[11] |
VIN N, BATTIN-LECLERC F, Le GALL H, et al. A study of chlorobenzene pyrolysis[J]. Proceedings of the Combustion Institute, 2019, 37(1): 399-407. doi: 10.1016/j.proci.2018.05.067
|
[12] |
EVERAERT K, BAEYENS J. Catalytic combustion of volatile organic compounds[J]. Journal of Hazardous Materials, 2004, 109(1/2/3): 113-139.
|
[13] |
FINOCCHIO E, BUSCA G, NOTARO M. A review of catalytic processes for the destruction of PCDD and PCDF from waste gases[J]. Applied Catalysis B:Environmental, 2006, 62(1/2): 12-20.
|
[14] |
WENG X L, SUN P F, LONG Y, et al. Catalytic oxidation of chlorobenzene over Mn xCe1– xO2/HZSM-5 catalysts: A study with practical implications[J]. Environmental Science & Technology, 2017, 51(14): 8057-8066.
|
[15] |
LIU X L, CHEN L, ZHU T Y, et al. Catalytic oxidation of chlorobenzene over noble metals (Pd, Pt, Ru, Rh) and the distributions of polychlorinated by-products[J]. Journal of Hazardous Materials, 2019, 363: 90-98. doi: 10.1016/j.jhazmat.2018.09.074
|
[16] |
WANG G, WANG Y, QIN L B, et al. Efficient and stable degradation of chlorobenzene over a porous iron-manganese oxide supported ruthenium catalyst[J]. Catalysis Science & Technology, 2020, 10(21): 7203-7216.
|
[17] |
CANO M, GUARÍN F, ARISTIZÁBAL B, et al. Catalytic activity and stability of Pd/Co catalysts in simultaneous selective catalytic reduction of NOx with methane and oxidation of o-dichlorobenzene[J]. Catalysis Today, 2017, 296: 105-117. doi: 10.1016/j.cattod.2017.05.049
|
[18] |
LIANG W J, ZHU Y X, REN S D, et al. Catalytic combustion of chlorobenzene at low temperature over Ru-Ce/TiO2: High activity and high selectivity[J]. Applied Catalysis A:General, 2021, 623: 118257. doi: 10.1016/j.apcata.2021.118257
|
[19] |
CHEN G, CAI Y P, ZHANG H, et al. Pt and Mo co-decorated MnO2 nanorods with superior resistance to H2O, sintering, and HCl for catalytic oxidation of chlorobenzene[J]. Environmental Science & Technology, 2021, 55(20): 14204-14214.
|
[20] |
WU S L, ZHAO H J, DONG F, et al. Construction of superhydrophobic Ru/TiCeO x catalysts for the enhanced water resistance of o-dichlorobenzene catalytic combustion[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2610-2621.
|
[21] |
DAI Q G, BAI S X, WANG Z Y, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts[J]. Applied Catalysis B:Environmental, 2012, 126: 64-75. doi: 10.1016/j.apcatb.2012.07.008
|
[22] |
HUANG H, DAI Q G, WANG X Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B:Environmental, 2014, 158/159: 96-105. doi: 10.1016/j.apcatb.2014.01.062
|
[23] |
DAI Q G, BAI S X, WANG J W, et al. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene[J]. Applied Catalysis B:Environmental, 2013, 142/143: 222-233. doi: 10.1016/j.apcatb.2013.05.026
|
[24] |
van den BRINK R W, MULDER P, LOUW R. Catalytic combustion of chlorobenzene on Pt/γ-Al2O3 in the presence of aliphatic hydrocarbons[J]. Catalysis Today, 1999, 54(1): 101-106. doi: 10.1016/S0920-5861(99)00172-8
|
[25] |
van den BRINK R W, LOUW R, MULDER P. Increased combustion rate of chlorobenzene on Pt/γ-Al2O3 in binary mixtures with hydrocarbons and with carbon monoxide[J]. Applied Catalysis B:Environmental, 2000, 25(4): 229-237. doi: 10.1016/S0926-3373(99)00137-X
|
[26] |
AZNÁREZ A, DELAIGLE R, ELOY P, et al. Catalysts based on pillared clays for the oxidation of chlorobenzene[J]. Catalysis Today, 2015, 246: 15-27. doi: 10.1016/j.cattod.2014.07.024
|
[27] |
TARALUNGA M, MIJOIN J, MAGNOUX P. Catalytic destruction of chlorinated POPs—Catalytic oxidation of chlorobenzene over PtHFAU catalysts[J]. Applied Catalysis B:Environmental, 2005, 60(3/4): 163-171.
|
[28] |
TOPKA P, DELAIGLE R, KALUŽA L, et al. Performance of platinum and gold catalysts supported on ceria-zirconia mixed oxide in the oxidation of chlorobenzene[J]. Catalysis Today, 2015, 253: 172-177. doi: 10.1016/j.cattod.2015.02.032
|
[29] |
CAI T, HUANG H, DENG W, et al. Catalytic combustion of 1, 2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts[J]. Applied Catalysis B:Environmental, 2015, 166/167: 393-405. doi: 10.1016/j.apcatb.2014.10.047
|
[30] |
LONG G Y, CHEN M X, LI Y J, et al. One-pot synthesis of monolithic Mn-Ce-Zr ternary mixed oxides catalyst for the catalytic combustion of chlorobenzene[J]. Chemical Engineering Journal, 2019, 360: 964-973. doi: 10.1016/j.cej.2018.07.091
|
[31] |
GU Y F, CAI T, GAO X H, et al. Catalytic combustion of chlorinated aromatics over WO x/CeO2 catalysts at low temperature[J]. Applied Catalysis B:Environmental, 2019, 248: 264-276. doi: 10.1016/j.apcatb.2018.12.055
|
[32] |
DENG W, TANG Q X, HUANG S S, et al. Low temperature catalytic combustion of chlorobenzene over cobalt based mixed oxides derived from layered double hydroxides[J]. Applied Catalysis B:Environmental, 2020, 278: 119336. doi: 10.1016/j.apcatb.2020.119336
|
[33] |
WU S L, ZHAO H J, TANG Z C, et al. Controlled synthesis of ordered mesoporous TiO2-ZrO2 supported CeSn oxides catalyst for the elimination of 1, 2-dichlorobenzene[J]. Microporous and Mesoporous Materials, 2020, 302: 110214. doi: 10.1016/j.micromeso.2020.110214
|
[34] |
WANG Y, WANG G, DENG W, et al. Study on the structure-activity relationship of Fe-Mn oxide catalysts for chlorobenzene catalytic combustion[J]. Chemical Engineering Journal, 2020, 395: 125172. doi: 10.1016/j.cej.2020.125172
|
[35] |
DAI Y, WANG X Y, LI D, et al. Catalytic combustion of chlorobenzene over Mn-Ce-La-O mixed oxide catalysts[J]. Journal of Hazardous Materials, 2011, 188(1/2/3): 132-139.
|
[36] |
HUANG H, GU Y F, ZHAO J, et al. Catalytic combustion of chlorobenzene over VO x/CeO2 catalysts[J]. Journal of Catalysis, 2015, 326: 54-68. doi: 10.1016/j.jcat.2015.02.016
|
[37] |
WANG Y, DENG W, WANG Y F, et al. A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce-Mn oxides[J]. Molecular Catalysis, 2018, 459: 61-70. doi: 10.1016/j.mcat.2018.08.022
|
[38] |
SHI Q, LONG H M, CHUN T J, et al. Catalytic combustion of chlorobenzene with VOx/CeO2 catalysts: Influence of catalyst synthesis method[J]. International Journal of Chemical Reactor Engineering, 2019, 17(12): 20190084.
|
[39] |
ZHANG X J, WEI Y H, SONG Z X, et al. Silicotungstic acid modified CeO2 catalyst with high stability for the catalytic combustion of chlorobenzene[J]. Chemosphere, 2021, 263: 128129. doi: 10.1016/j.chemosphere.2020.128129
|
[40] |
SONG Z J, YU S X, LIU H, et al. Carbon/chlorinate deposition on MnO x-CeO2 catalyst in chlorobenzene combustion: The effect of SCR flue gas[J]. Chemical Engineering Journal, 2022, 433: 133552. doi: 10.1016/j.cej.2021.133552
|
[41] |
WU L Y, HE F, LUO J Q, et al. Synthesis of three-dimensional ordered mesoporous MnO x/CeO2 bimetal oxides for the catalytic combustion of chlorobenzene[J]. RSC Advances, 2017, 7(43): 26952-26959. doi: 10.1039/C7RA02299A
|
[42] |
WANG X Y, KANG Q, LI D. Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Applied Catalysis B:Environmental, 2009, 86(3/4): 166-175.
|
[43] |
WANG X Y, KANG Q, LI D. Low-temperature catalytic combustion of chlorobenzene over MnO x-CeO2 mixed oxide catalysts[J]. Catalysis Communications, 2008, 9(13): 2158-2162. doi: 10.1016/j.catcom.2008.04.021
|
[44] |
HE C, MEN G S, YU Y K, et al. Chlorobenzene destruction over mesostructured CuO and MnOx co-modified CeO2 catalyst: Activity and activation route[J]. Water, Air, & Soil Pollution, 2015, 226(3): 57.
|
[45] |
HE C, YU Y K, SHEN Q, et al. Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnO x-CeO2 catalysts for chlorobenzene destruction[J]. Applied Surface Science, 2014, 297: 59-69. doi: 10.1016/j.apsusc.2014.01.076
|
[46] |
HE C, XU B T, SHI J W, et al. Catalytic destruction of chlorobenzene over mesoporous ACeO x (a = Co, Cu, Fe, Mn, or Zr) composites prepared by inorganic metal precursor spontaneous precipitation[J]. Fuel Processing Technology, 2015, 130: 179-187. doi: 10.1016/j.fuproc.2014.10.008
|
[47] |
LIN S J, SU G J, ZHENG M H, et al. Synthesis of flower-like Co3O4-CeO2 composite oxide and its application to catalytic degradation of 1, 2, 4-trichlorobenzene[J]. Applied Catalysis B:Environmental, 2012, 123/124: 440-447. doi: 10.1016/j.apcatb.2012.05.011
|
[48] |
JIA M K, SU G J, ZHENG M H, et al. Synthesis of a magnetic micro/nano Fe xO y-CeO2 composite and its application for degradation of hexachlorobenzene[J]. Science China Chemistry, 2010, 53(6): 1266-1272. doi: 10.1007/s11426-010-3164-3
|
[49] |
WANG J, WANG X, LIU X L, et al. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: The effects of chlorine substituents[J]. Catalysis Today, 2015, 241: 92-99. doi: 10.1016/j.cattod.2014.04.002
|
[50] |
WANG J, WANG X, LIU X L, et al. Kinetics and mechanism study on catalytic oxidation of chlorobenzene over V2O5/TiO2 catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2015, 402: 1-9. doi: 10.1016/j.molcata.2015.03.003
|
[51] |
BERTINCHAMPS F, POLEUNIS C, GRÉGOIRE C, et al. Elucidation of deactivation or resistance mechanisms of CrOx, VOx and MnOx supported phases in the total oxidation of chlorobenzene via ToF-SIMS and XPS analyses[J]. Surface and Interface Analysis, 2008, 40(3/4): 231-236.
|
[52] |
BERTINCHAMPS F, GRÉGOIRE C, GAIGNEAUX E M. Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics[J]. Applied Catalysis B:Environmental, 2006, 66(1/2): 1-9.
|
[53] |
KHALEEL A, AL-NAYLI A. Supported and mixed oxide catalysts based on iron and titanium for the oxidative decomposition of chlorobenzene[J]. Applied Catalysis B:Environmental, 2008, 80(1/2): 176-184.
|
[54] |
HE F, CHEN Y, ZHAO P, et al. Effect of calcination temperature on the structure and performance of CeO x-MnO x/TiO2 nanoparticles for the catalytic combustion of chlorobenzene[J]. Journal of Nanoparticle Research, 2016, 18(5): 119. doi: 10.1007/s11051-016-3428-8
|
[55] |
DENG W, DAI Q G, LAO Y J, et al. Low temperature catalytic combustion of 1, 2-dichlorobenzene over CeO2-TiO2 mixed oxide catalysts[J]. Applied Catalysis B:Environmental, 2016, 181: 848-861. doi: 10.1016/j.apcatb.2015.07.053
|
[56] |
TIAN W, FAN X Y, YANG H S, et al. Preparation of MnO x/TiO2 composites and their properties for catalytic oxidation of chlorobenzene[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 887-891.
|
[57] |
LUO J Q, HE F, LIU S T. Catalytic combustion of chlorobenzene over core-shell Mn/TiO2 catalysts[J]. Journal of Porous Materials, 2017, 24(3): 821-828. doi: 10.1007/s10934-016-0321-x
|
[58] |
LEE J E, JURNG J. Catalytic conversions of polychlorinated benzenes and dioxins with low-chlorine using V2O5/TiO2[J]. Catalysis Letters, 2008, 120(3): 294-298.
|
[59] |
LICHTENBERGER J. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts[J]. Journal of Catalysis, 2004, 223(2): 296-308. doi: 10.1016/j.jcat.2004.01.032
|
[60] |
LICHTENBERGER J, AMIRIDIS M D. Deactivation of V2O5/TiO2 catalysts during the oxidation of meta-dichlorobenzene in the presence of methyl-naphthalene[J]. Catalysis Today, 2004, 98(3): 447-453. doi: 10.1016/j.cattod.2004.08.001
|
[61] |
HETRICK C E, PATCAS F, AMIRIDIS M D. Effect of water on the oxidation of dichlorobenzene over V2O5/TiO2 catalysts[J]. Applied Catalysis B:Environmental, 2011, 101(3/4): 622-628.
|
[62] |
CHIN S, JURNG J, LEE J H, et al. Catalytic conversion of 1, 2-dichlorobenzene using V2O5/TiO2 catalysts by a thermal decomposition process[J]. Chemosphere, 2009, 75(9): 1206-1209. doi: 10.1016/j.chemosphere.2009.02.015
|
[63] |
JUNG K Y, JUNG Y R, JEON J K, et al. Preparation of mesoporous V2O5/TiO2 via spray pyrolysis and its application to the catalytic conversion of 1, 2-dichlorobenzene[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(1): 144-148. doi: 10.1016/j.jiec.2010.12.013
|
[64] |
CHIN S, PARK E, KIM M, et al. Effect of the support material (TiO2) synthesis conditions in chemical vapor condensation on the catalytic oxidation for 1, 2-dichlorobenzene over V2O5/TiO2[J]. Powder Technology, 2012, 217: 388-393. doi: 10.1016/j.powtec.2011.10.055
|
[65] |
CHEN N Y, YANG S C, LIU M C, et al. Pellet vanadia catalysts for oxidative destruction of 1, 2-dichlorobenzene: Roles of the grafted TiO2 in vanadia morphology and catalytic reaction[J]. Catalysis Surveys from Asia, 2015, 19(1): 38-56. doi: 10.1007/s10563-015-9184-4
|
[66] |
SUN W, GONG B W, PAN J, et al. Catalytic combustion of CVOCs over Cr xTi1- x oxide catalysts[J]. Journal of Catalysis, 2020, 391: 132-144. doi: 10.1016/j.jcat.2020.08.007
|
[67] |
LIN F, WANG Q L, HUANG X N, et al. Investigation of chlorine-poisoning mechanism of MnO x/TiO2 and MnO x-CeO2/TiO2 catalysts during o-DCBz catalytic decomposition: Experiment and first-principles calculation[J]. Journal of Environmental Management, 2021, 298: 113454. doi: 10.1016/j.jenvman.2021.113454
|
[68] |
JI S S, LI X D, REN Y, et al. Ozone-enhanced oxidation of PCDD/Fs over V2O5-TiO2-based catalyst[J]. Chemosphere, 2013, 92(3): 265-272. doi: 10.1016/j.chemosphere.2013.01.087
|
[69] |
DEBECKER D P, DELAIGLE R, HUNG P C, et al. Evaluation of PCDD/F oxidation catalysts: Confronting studies on model molecules with tests on PCDD/F-containing gas stream[J]. Chemosphere, 2011, 82(9): 1337-1342. doi: 10.1016/j.chemosphere.2010.12.007
|
[70] |
YU M F, LIN X Q, LI X D, et al. Catalytic destruction of PCDD/Fs over vanadium oxide-based catalysts[J]. Environmental Science and Pollution Research, 2016, 23(16): 16249-16258. doi: 10.1007/s11356-016-6807-x
|
[71] |
WEBER R, SAKURAI T, HAGENMAIER H. Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts[J]. Applied Catalysis B:Environmental, 1999, 20(4): 249-256. doi: 10.1016/S0926-3373(98)00115-5
|
[72] |
YANG C C, CHANG S H, HONG B Z, et al. Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5-WO3/TiO2-based catalysts[J]. Chemosphere, 2008, 73(6): 890-895. doi: 10.1016/j.chemosphere.2008.07.027
|
[73] |
CHEN Y, WU Q, LIU K R. Dual degradation of gaseous 1, 2-dichlorobenzene and PCDD/Fs using Ce doped V xO y/TiO2 immobilized on cordierite[J]. Chemosphere, 2016, 154: 472-481. doi: 10.1016/j.chemosphere.2016.04.012
|
[74] |
YU M F, LIN X Q, YAN M, et al. Low temperature destruction of PCDD/Fs over V2O5-CeO2/TiO2 catalyst with ozone[J]. Environmental Science and Pollution Research, 2016, 23(17): 17563-17570. doi: 10.1007/s11356-016-6955-z
|
[75] |
WEBER R, SAKURAI T. Low temperature decomposition of PCB by TiO2-based V2O5/WO3 catalyst: Evaluation of the relevance of PCDF formation and insights into the first step of oxidative destruction of chlorinated aromatics[J]. Applied Catalysis B:Environmental, 2001, 34(2): 113-127. doi: 10.1016/S0926-3373(01)00211-9
|
[76] |
LU Y J, DAI Q G, WANG X Y. Catalytic combustion of chlorobenzene on modified LaMnO3 catalysts[J]. Catalysis Communications, 2014, 54: 114-117. doi: 10.1016/j.catcom.2014.05.018
|
[77] |
CHEN X, HE F, LIU S T. CuO/MnO x composites obtained from Mn-MIL-100 precursors as efficient catalysts for the catalytic combustion of chlorobenzene[J]. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130(2): 1063-1076. doi: 10.1007/s11144-020-01816-6
|
[78] |
YANG Y, HUANG J, ZHANG S Z, et al. Catalytic removal of gaseous HCBz on Cu doped OMS: Effect of Cu location on catalytic performance[J]. Applied Catalysis B:Environmental, 2014, 150/151: 167-178. doi: 10.1016/j.apcatb.2013.11.041
|
[79] |
WU M, WANG X Y, DAI Q G, et al. Catalytic combustion of chlorobenzene over Mn-Ce/Al2O3 catalyst promoted by Mg[J]. Catalysis Communications, 2010, 11(12): 1022-1025. doi: 10.1016/j.catcom.2010.04.011
|
[80] |
WU M, WANG X Y, DAI Q G, et al. Low temperature catalytic combustion of chlorobenzene over Mn-Ce-O/γ-Al2O3 mixed oxides catalyst[J]. Catalysis Today, 2010, 158: 336-342. doi: 10.1016/j.cattod.2010.04.006
|
[81] |
TANG A D, HU L Q, YANG X H, et al. Promoting effect of the addition of Ce and Fe on manganese oxide catalyst for 1, 2-dichlorobenzene catalytic combustion[J]. Catalysis Communications, 2016, 82: 41-45. doi: 10.1016/j.catcom.2016.04.015
|
[82] |
MA X D, SUN Q, FENG X, et al. Catalytic oxidation of 1, 2-dichlorobenzene over CaCO3/α-Fe2O3 nanocomposite catalysts[J]. Applied Catalysis A:General, 2013, 450: 143-151. doi: 10.1016/j.apcata.2012.10.019
|
[83] |
MA X D, ZHENG M H, LIU W B, et al. Synergic effect of calcium oxide and iron(Ⅲ) oxide on the dechlorination of hexachlorobenzene[J]. Chemosphere, 2005, 60(6): 796-801. doi: 10.1016/j.chemosphere.2005.04.021
|
[84] |
MA X D, SUN H W, HE H, et al. Competitive reaction during decomposition of hexachlorobenzene over ultrafine Ca-Fe composite oxide catalyst[J]. Catalysis Letters, 2007, 119(1): 142-147.
|
[85] |
JIA M K, SU G J, ZHENG M H, et al. Development of self-assembled 3D Fe xO y micro/nano materials for application in hexachlorobenzene degradation[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(3): 2100-2106. doi: 10.1166/jnn.2011.3121
|
[86] |
SU G J, LIU Y X, HUANG L Y, et al. Synthesis of hierarchical Mg-doped Fe3O4 micro/nano materials for the decomposition of hexachlorobenzene[J]. Chemosphere, 2014, 99: 216-223. doi: 10.1016/j.chemosphere.2013.10.090
|
[87] |
HUANG L Y, SU G J, ZHANG A Q, et al. Degradation of polychlorinated biphenyls using mesoporous iron-based spinels[J]. Journal of Hazardous Materials, 2013, 261: 451-462. doi: 10.1016/j.jhazmat.2013.07.064
|
[88] |
WANG X Y, RAN L, DAI Y, et al. Removal of Cl adsorbed on Mn-Ce-La solid solution catalysts during CVOC combustion[J]. Journal of Colloid and Interface Science, 2014, 426: 324-332. doi: 10.1016/j.jcis.2013.10.007
|
[89] |
FENG B B, WEI Y X, QIU Y N, et al. Ce-modified AlZr pillared clays supported-transition metals for catalytic combustion of chlorobenzene[J]. Journal of Rare Earths, 2018, 36(11): 1169-1174. doi: 10.1016/j.jre.2018.03.026
|
[90] |
QIU Y N, YE N, SITU D N, et al. Study of catalytic combustion of chlorobenzene and temperature programmed reactions over CrCeOx/AlFe pillared clay catalysts[J]. Materials, 2019, 12(5): 728. doi: 10.3390/ma12050728
|
[91] |
ZUO S F, DING M L, TONG J, et al. Study on the preparation and characterization of a titanium-pillared clay-supported CrCe catalyst and its application to the degradation of a low concentration of chlorobenzene[J]. Applied Clay Science, 2015, 105/106: 118-123. doi: 10.1016/j.clay.2014.12.033
|
[92] |
KAN J W, DENG L, LI B, et al. Performance of co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation[J]. Applied Catalysis A:General, 2017, 530: 21-29. doi: 10.1016/j.apcata.2016.11.013
|
[93] |
TAO H Y, LI J, MA Q Y, et al. Synthesis of W-Nb-O solid acid for catalytic combustion of low-concentration monochlorobenzene[J]. Chemical Engineering Journal, 2020, 382: 123045. doi: 10.1016/j.cej.2019.123045
|
[94] |
LI Y, CHEN J, HU Z Y, et al. A facile method to synthesize Co3O4 catalyst for efficient chlorobenzene combustion[J]. ChemistrySelect, 2022, 7(17): e202200481. doi: 10.1002/slct.202200481
|
[95] |
NIE A M, YANG H S, LI Q A, et al. Catalytic oxidation of chlorobenzene over V2O5/TiO2–carbon nanotubes composites[J]. Industrial & Engineering Chemistry Research, 2011, 50(17): 9944-9948.
|
[96] |
TIAN W, YANG H S, FAN X Y, et al. Low-temperature catalytic oxidation of chlorobenzene over MnO X/TiO2-CNTs nano-composites prepared by wet synthesis methods[J]. Catalysis Communications, 2010, 11(15): 1185-1188. doi: 10.1016/j.catcom.2010.06.010
|
[97] |
DU C C, WANG Q L, PENG Y Q, et al. Catalytic oxidation of 1, 2-DCBz over V2O5/TiO2-CNTs: Effect of CNT diameter and surface functional groups[J]. Environmental Science and Pollution Research, 2017, 24(5): 4894-4901. doi: 10.1007/s11356-016-8075-1
|
[98] |
WANG Q L, HUNG P C, LU S Y, et al. Catalytic decomposition of gaseous PCDD/Fs over V2O5/TiO2-CNTs catalyst: Effect of NO and NH3 addition[J]. Chemosphere, 2016, 159: 132-137. doi: 10.1016/j.chemosphere.2016.05.072
|
[99] |
ZHAO H J, HAN W L, DONG F, et al. Highly-efficient catalytic combustion performance of 1, 2-dichlorobenzene over mesoporous TiO2-SiO2 supported CeMn oxides: The effect of acid sites and redox sites[J]. Journal of Industrial and Engineering Chemistry, 2018, 64: 194-205. doi: 10.1016/j.jiec.2018.03.016
|
[100] |
SUN Y F, TAKAOKA M, TAKEDA N, et al. Kinetics on the decomposition of polychlorinated biphenyls with activated carbon-supported iron[J]. Chemosphere, 2006, 65(2): 183-189. doi: 10.1016/j.chemosphere.2006.03.009
|
[101] |
FAN Y, LU X B, NI Y W, et al. Destruction of polychlorinated aromatic compounds by spinel-type complex oxides[J]. Environmental Science & Technology, 2010, 44(8): 3079-3084.
|
[102] |
FAN Y, LU X B, NI Y W, et al. Catalytic destruction of chlorinated aromatic pollutants over mesoporous Cu xMg1− xAl2O4 spinel oxides[J]. Applied Catalysis B:Environmental, 2011, 101(3/4): 606-612.
|
[103] |
ZHANG L F, ZHENG M H, LIU W B, et al. A method for decomposition of hexachlorobenzene by gamma-alumina[J]. Journal of Hazardous Materials, 2008, 150(3): 831-834. doi: 10.1016/j.jhazmat.2007.10.037
|
[104] |
ZHANG L F, ZHENG M H, ZHANG B, et al. Decomposition of hexachlorobenzene over Al2O3 supported metal oxide catalysts[J]. Journal of Environmental Sciences, 2008, 20(12): 1523-1526. doi: 10.1016/S1001-0742(08)62560-7
|
[105] |
ZHENG J, CHEN Z, FANG J F, et al. MCM-41 supported nano-sized CuO-CeO2 for catalytic combustion of chlorobenzene[J]. Journal of Rare Earths, 2020, 38(9): 933-940. doi: 10.1016/j.jre.2019.06.005
|
[106] |
CHENG Z, LI J R, YANG P, et al. Preparation of MnCo/MCM-41 catalysts with high performance for chlorobenzene combustion[J]. Chinese Journal of Catalysis, 2018, 39(4): 849-856. doi: 10.1016/S1872-2067(17)62950-4
|
[107] |
HE F, LUO J Q, LIU S T. Novel metal loaded KIT-6 catalysts and their applications in the catalytic combustion of chlorobenzene[J]. Chemical Engineering Journal, 2016, 294: 362-370. doi: 10.1016/j.cej.2016.02.068
|
[108] |
ZHAO W, CHENG J, WANG L N, et al. Catalytic combustion of chlorobenzene on the Ln modified Co/HMS[J]. Applied Catalysis B:Environmental, 2012, 127: 246-254. doi: 10.1016/j.apcatb.2012.08.019
|
[109] |
LI N, CHENG J, XING X, et al. Distribution and formation mechanisms of polychlorinated organic by-products upon the catalytic oxidation of 1, 2-dichlorobenzene with palladium-loaded catalysts[J]. Journal of Hazardous Materials, 2020, 393: 122412. doi: 10.1016/j.jhazmat.2020.122412
|
[110] |
WANG Y, CHEN Y, ZHANG L, et al. Total catalytic oxidation of chlorinated aromatics over bimetallic Pt-Ru supported on hierarchical HZSM-5 zeolite[J]. Microporous and Mesoporous Materials, 2020, 308: 110538. doi: 10.1016/j.micromeso.2020.110538
|
[111] |
SUN P F, WANG W L, DAI X X, et al. Mechanism study on catalytic oxidation of chlorobenzene over Mn xCe1- xO2/H-ZSM5 catalysts under dry and humid conditions[J]. Applied Catalysis B:Environmental, 2016, 198: 389-397. doi: 10.1016/j.apcatb.2016.05.076
|
[112] |
SUN P F, CHEN J K, ZAI S Y, et al. Regeneration mechanism of a deactivated zeolite-supported catalyst for the combustion of chlorinated volatile organic compounds[J]. Catalysis Science & Technology, 2021, 11(3): 923-933.
|
[113] |
van den BRINK R W, KRZAN M, FEIJEN-JEURISSEN M M R, et al. The role of the support and dispersion in the catalytic combustion of chlorobenzene on noble metal based catalysts[J]. Applied Catalysis B:Environmental, 2000, 24(3/4): 255-264.
|
[114] |
DU C C, LU S Y, WANG Q L, et al. A review on catalytic oxidation of chloroaromatics from flue gas[J]. Chemical Engineering Journal, 2018, 334: 519-544. doi: 10.1016/j.cej.2017.09.018
|
[115] |
GU Y F, SHAO S J, SUN W, et al. The oxidation of chlorinated organic compounds over W-modified Pt/CeO2 catalysts[J]. Journal of Catalysis, 2019, 380: 375-386. doi: 10.1016/j.jcat.2019.06.041
|
[116] |
SHI Q, DING L, LONG H M, et al. Low-temperature catalytic combustion of chlorobenzene over CeOx-VOx/TiO2-graphene oxide catalysts[J]. Catalysis Letters, 2022, 152(12): 3617-3631. doi: 10.1007/s10562-022-03932-5
|
[117] |
JIA H Q, XING Y, ZHANG L G, et al. Progress of catalytic oxidation of typical chlorined volatile organic compounds (CVOCs): A review[J]. Science of the Total Environment, 2023, 865: 161063. doi: 10.1016/j.scitotenv.2022.161063
|
[118] |
BURGOS N, PAULIS M, MIRARI ANTXUSTEGI M, et al. Deep oxidation of VOC mixtures with platinum supported on Al2O3/Al monoliths[J]. Applied Catalysis B:Environmental, 2002, 38(4): 251-258. doi: 10.1016/S0926-3373(01)00294-6
|
[119] |
SU Y, FU K X, PANG C H, et al. Recent advances of chlorinated volatile organic compounds' oxidation catalyzed by multiple catalysts: Reasonable adjustment of acidity and redox properties[J]. Environmental Science & Technology, 2022, 56(14): 9854-9871.
|
[120] |
ZHANG Z X, JIANG Z, SHANGGUAN W F. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review[J]. Catalysis Today, 2016, 264: 270-278. doi: 10.1016/j.cattod.2015.10.040
|
[121] |
DAI Y, WANG X Y, DAI Q G, et al. Effect of Ce and La on the structure and activity of MnO x catalyst in catalytic combustion of chlorobenzene[J]. Applied Catalysis B:Environmental, 2012, 111/112: 141-149. doi: 10.1016/j.apcatb.2011.09.028
|
[122] |
DAI X X, WANG X W, LONG Y P, et al. Efficient elimination of chlorinated organics on a phosphoric acid modified CeO2 catalyst: A hydrolytic destruction route[J]. Environmental Science & Technology, 2019, 53(21): 12697-12705.
|
[123] |
KIM H S, KIM H J, KIM J H, et al. Noble-metal-based catalytic oxidation technology trends for volatile organic compound (VOC) removal[J]. Catalysts, 2022, 12(1): 63. doi: 10.3390/catal12010063
|
[124] |
de JONG V, CIEPLIK M K, LOUW R. Formation of dioxins in the catalytic combustion of chlorobenzene and a micropollutant-like mixture on Pt/gamma-Al2O3[J]. Environmental Science & Technology, 2004, 38(19): 5217-5223.
|
[125] |
TARALUNGA M, INNOCENT B, MIJOIN J, et al. Catalytic combustion of benzofuran and of a benzofuran/1, 2-dichlorobenzene binary mixture over zeolite catalysts[J]. Applied Catalysis B:Environmental, 2007, 75(1/2): 139-146.
|
[126] |
LIN F W, XIANG L, ZHANG Z M, et al. Comprehensive review on catalytic degradation of Cl-VOCs under the practical application conditions[J]. Critical Reviews in Environmental Science and Technology, 2020, 52: 311-355.
|
[127] |
HASHEMIKIA S, MONTAZER M. Sodium hypophosphite and nano TiO2 inorganic catalysts along with citric acid on textile producing multi-functional properties[J]. Applied Catalysis A:General, 2012, 417/418: 200-208. doi: 10.1016/j.apcata.2011.12.041
|
[128] |
ZHANG Z, HUANG J, XIA H Q, et al. Chlorinated volatile organic compound oxidation over SO42−/Fe2O3 catalysts[J]. Journal of Catalysis, 2018, 360: 277-289. doi: 10.1016/j.jcat.2017.11.024
|
[129] |
YANG S, ZHAO H J, DONG F, et al. Highly efficient catalytic combustion of o-dichlorobenzene over three-dimensional ordered mesoporous cerium manganese bimetallic oxides: A new concept of chlorine removal mechanism[J]. Molecular Catalysis, 2019, 463: 119-129. doi: 10.1016/j.mcat.2018.12.006
|
[130] |
HASHIMOTO Y, UEMICHI Y, AYAME A. Low-temperature hydrodechlorination mechanism of chlorobenzenes over platinum-supported and palladium-supported alumina catalysts[J]. Applied Catalysis A:General, 2005, 287(1): 89-97. doi: 10.1016/j.apcata.2005.03.039
|
[131] |
HATJE U, HAGELSTEIN M, FÖRSTER H. XAS studies on the interaction of with PtY and PdY zeolites[J]. Studies in Surface Science and Catalysis, 1994, 84: 773-780.
|
[132] |
van den BRINK R W, LOUW R, MULDER P. Formation of polychlorinated benzenes during the catalytic combustion of chlorobenzene using a Pt/γ-Al2O3 catalyst[J]. Applied Catalysis B:Environmental, 1998, 16(3): 219-226. doi: 10.1016/S0926-3373(97)00076-3
|
[133] |
YANG Y, HUANG J, WANG S W, et al. Catalytic removal of gaseous unintentional POPs on manganese oxide octahedral molecular sieves[J]. Applied Catalysis B:Environmental, 2013, 142/143: 568-578. doi: 10.1016/j.apcatb.2013.05.048
|
[134] |
HE F, JIAO Y M, WU L Y, et al. Enhancement mechanism of Sn on the catalytic performance of Cu/KIT-6 during the catalytic combustion of chlorobenzene[J]. Catalysis Science & Technology, 2019, 9(21): 6114-6123.
|
[135] |
DAI Q G, BAI S X, WANG X Y, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts: Mechanism study[J]. Applied Catalysis B:Environmental, 2013, 129: 580-588. doi: 10.1016/j.apcatb.2012.10.006
|
[136] |
JI L J, CAO X, LU S Y, et al. Catalytic oxidation of PCDD/F on a V2O5-WO3/TiO2 catalyst: Effect of chlorinated benzenes and chlorinated phenols[J]. Journal of Hazardous Materials, 2018, 342: 220-230. doi: 10.1016/j.jhazmat.2017.07.020
|
[137] |
ZHU B W, LIM T T. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: Reactive sites, catalyst stability, particle aging, and regeneration[J]. Environmental Science & Technology, 2007, 41(21): 7523-7529.
|
[138] |
BERTINCHAMPS F, ATTIANESE A, MESTDAGH M M, et al. Catalysts for chlorinated VOCs abatement: Multiple effects of water on the activity of VO x based catalysts for the combustion of chlorobenzene[J]. Catalysis Today, 2006, 112(1/2/3/4): 165-168.
|