-
抗生素作为一种新污染物,对环境和人类健康的潜在威胁已被越来越多的人所关注[1]. 磺胺类抗生素(SAs)是历史上使用时间最长的抗生素之一,目前已有150多种磺胺类抗生素被应用于医药、农业和畜牧养殖业中[2],由于使用量大、使用不规范以及其具有较强的亲水性和化学稳定性,SAs已成为全球水环境中赋存最广泛的一类抗生素[3]. 磺胺甲恶唑(SMX)是一种常用的SAs,已被确定为地表水和地下水中最常检测到的抗生素之一,在我国主要水系近10年中均大量检测到SMX,浓度范围约为1.72—224.27 ng·L−1[4]. 长期低水平的抗生素残留会加速耐药细菌和耐药基因的发展,从而对生态环境和人类健康构成重大威胁[5].
目前,去除水体中抗生素的方法大致分为吸附、生物和氧化降解等三类. 由于SMX具有强亲水性,吸附法去除的效率较低[6],同时,生物降解因为耗时较长[7],一般也不作为SMX降解去除的主要方法. 在以往的研究中,已经报道了多种氧化体系对水体中SMX的降解去除,如游离氯、臭氧、铁酸盐和二氧化钛光催化降解等,其中游离氯和臭氧虽然取得了较好的处理效果,但在处理过程中不可避免的产生了有毒副产物,造成二次污染[8]. 而铁酸盐和二氧化钛并未在水处理工艺中得到过实际的应用,因此,有必要进一步研究其他的氧化剂对SMX的去除情况.
ClO2是水处理工艺中常用的消毒剂和氧化剂,因具有较高的生物灭杀效率和较少的氯化副产物产生,已被广泛应用于国内外的水处理系统中[9]. 前期的研究已经证实ClO2能够有效降解SAs[10 − 11],然而,由于ClO2与SMX反应速度极快,反应中间体、过渡态存在时间短暂,实验手段难以捕捉、提取及证实具体的物质种类,致使不能更深层次的剖析整个反应发生的路径以及反应机理. 本文采用量子化学模拟分析ClO2氧化降解SMX的过程,计算获得可能的过渡态、中间体及终产物,结合实验结果进行比对分析,从而进一步明确ClO2氧化降解SMX的反应路径及机理.
二氧化氯降解磺胺甲恶唑的反应机理研究
The mechanism of sulfamethoxazole degraded by chlorine dioxide
-
摘要: 磺胺甲恶唑(SMX)作为新型污染物在水环境中广泛检出,现有水处理工艺难以降解去除,二氧化氯(ClO2)作为高效氧化剂和消毒剂能有效降解磺胺类抗生素. 为探究ClO2降解SMX的反应路径,本研究采用量子化学计算方法分析模拟ClO2降解SMX的反应历程,结合反应产物的实验测定结果,确定二者反应的产物结构并提出反应路径. 研究结果表明,ClO2通过非离子化水解和单电子转移过程产生·OH并对SMX进行氧化降解,在SMX的异恶唑环和苯环上发生加成反应,其中,C21位点最易发生加成,势垒仅为5.1 kcal·mol−1;SMX的C3位点先发生加成反应,得到反应中间体,再进一步发生C(3)—N(11)键的断裂,两步反应的势垒分别为16.3 kcal·mol−1和16.9 kcal·mol−1;C16位点发生的加成反应与S(13)—C(16)键的断裂存在协同效应,势垒为9.7 kcal·mol−1;SMX磺酰基S13位点与ClO2发生取代反应,反应使N(11)—S(13)键断裂,势垒为18.9 kcal·mol−1. ClO2降解SMX的主要产物为对氨基苯酚、对氨基苯磺酸、对氨基苯磺酰胺和5-甲基异恶唑-3-醇等. 通过分析比对ClO2降解SMX产物的质谱数据,验证了降解路径的合理性. 本研究通过量子化学模拟结合实验结果分析反应机理及降解路径的方法合理可靠,可为ClO2氧化降解复杂结构有机物提供科学依据.Abstract: Sulfamethoxazole (SMX) has widely detected in the aqueous environment as an emerging contaminant and it is difficult to be removed by conventional water/wastewater treatment processes. Chlorine dioxide (ClO2) can effectively degrade sulfonamide antibiotics as an efficient oxidant and disinfectant. In order to investigate the reaction pathways of SMX reacting with ClO2, quantum chemical calculation and simulation were used to analyze the reaction pathways of SMX degraded by ClO2 in this research. Combined with experimental measurements of the reaction products between SMX and ClO2, reaction pathways were proposed and the product structures were determined. The results showed that ClO2 can generate ·OH through the processes of nonionic hydrolysis and single electron transfer and then degrade SMX. Addition reactions occurred at the isoxazole ring and benzene ring of SMX and the most reactive site was C21 atom with a potential barrier of 5.1 kcal·mol−1. The reaction intermediate was obtained via the addition reaction of C3 site of SMX firstly, and then the C(3)—N(11) bond was broken. The potential barriers of the two reaction steps were 16.3 kcal·mol−1 and 16.9 kcal·mol−1, respectively. There was synergistic effect between addition reaction of the C16 and the breakage of the S(13)—C(16) bond, with a potential barrier of 9.7 kcal·mol−1. The substitution reaction occurred at the S13 site of the sulfonyl group, which induced the cleavage of the N(11)—S(13) bond with a potential barrier of 18.9 kcal·mol−1. p-aminophenol, p-aminobenzene sulfonic acid, p-aminobenzene sulfonamide and 5-methylisoxazol-3-ol were found to be the common products. The products of SMX reacting with ClO2 were determined and the degradation pathways were verified by comparing with the mass spectrometry data. The method of quantum chemistry simulation combined with experimental results to analyze the reaction mechanism and degradation path is reasonable and reliable, which can provide scientific basis for complex organic degraded by ClO2.
-
Key words:
- chlorine dioxide /
- sulfamethoxazole /
- quantum chemistry /
- reaction pathway.
-
图 7 ClO2与SMX的反应路径(图中以蓝色、红色、黑色箭头分别表示反应势垒低于21 kcal·mol−1、反应势垒高于21 kcal·mol−1和根据已有研究分析得到的反应路径)
Figure 7. The pathways of ClO2 reacting with SMX (The blue and red arrows represent the pathways with reaction barrier below and above 21 kcal·mol−1, respectively. The black arrows represent the reaction pathways obtained from the existing research)
表 1 SMX的质谱测定条件
Table 1. Optimized conditions for electrospray tandem mass spectrometry determination of SMX
目标化合物
Compounds母离子
Precursor ion粉碎电压/V
Fragmentor定量
Quantitative定性
Qualitative子离子
Precursor ion碰撞电压/eV
Collision Energy子离子
Precursor ion碰撞电压/eV
Collision EnergySMX 254.2 95 108.8 27 155.9 17 -
[1] PELALAK R, ALIZADEH R, GHARESHABANI E, et al. Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: Experimental, modeling, transformation mechanism and DFT study[J]. Science of the Total Environment, 2020, 734: 139446. doi: 10.1016/j.scitotenv.2020.139446 [2] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. [3] 章强, 辛琦, 朱静敏, 等. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学, 2014, 33(7): 1075-1083. doi: 10.7524/j.issn.0254-6108.2014.07.001 ZHANG Q, XIN Q, ZHU J M, et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environmental Chemistry, 2014, 33(7): 1075-1083 (in Chinese). doi: 10.7524/j.issn.0254-6108.2014.07.001
[4] LI N, CAI Y X, CHEN H L, et al. Spatio-temporal distribution and risk assessment of antibiotic in the aquatic environment in China nationwide, A review[J]. Sustainability, 2022, 15(1): 386. doi: 10.3390/su15010386 [5] ZHANG Z Y, ZHANG Q, WANG T Z, et al. Assessment of global health risk of antibiotic resistance genes[J]. Nature Communications, 2022, 13: 1553. doi: 10.1038/s41467-022-29283-8 [6] 林爱秋, 程和发. 芬顿及光芬顿法降解氟喹诺酮类抗生素研究进展[J]. 环境化学, 2021, 40(5): 1305-1318. doi: 10.7524/j.issn.0254-6108.2021011401 LIN A Q, CHENG H F. Recent development in the degradation of fluoroquinolones by Fenton and photo-Fenton processes[J]. Environmental Chemistry, 2021, 40(5): 1305-1318 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021011401
[7] MULLA S I, HU A Y, SUN Q, et al. Biodegradation of sulfamethoxazole in bacteria from three different origins[J]. Journal of Environmental Management, 2018, 206: 93-102. [8] DE JESUS GAFFNEY V, CARDOSO V V, BENOLIEL M J, et al. Chlorination and oxidation of sulfonamides by free chlorine: Identification and behaviour of reaction products by UPLC-MS/MS[J]. Journal of Environmental Management, 2016, 166: 466-477. [9] GAN W H, HUANG S R, GE Y X, et al. Chlorite formation during ClO2 oxidation of model compounds having various functional groups and humic substances[J]. Water Research, 2019, 159: 348-357. doi: 10.1016/j.watres.2019.05.020 [10] HUBER M M, KORHONEN S, TERNES T A, et al. Oxidation of pharmaceuticals during water treatment with chlorine dioxide[J]. Water Research, 2005, 39(15): 3607-3617. doi: 10.1016/j.watres.2005.05.040 [11] WILLACH S, LUTZE H V, ECKEY K, et al. Degradation of sulfamethoxazole using ozone and chlorine dioxide - Compound-specific stable isotope analysis, transformation product analysis and mechanistic aspects[J]. Water Research, 2017, 122: 280-289. doi: 10.1016/j.watres.2017.06.001 [12] PANG R, LI N, HOU Z H, et al. Degradation of sulfonamide antibiotics and a structurally related compound by chlorine dioxide: Efficiency, kinetics, potential products and pathways[J]. Chemical Engineering Journal, 2023, 451: 138502. doi: 10.1016/j.cej.2022.138502 [13] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16 Rev. C. 01[CP]. Wallingford, CT. 2016. [14] LEGAULT C Y. CYLVIEW20[CP]. Université de Sherbrooke. 2020. [15] VIJAYA CHAMUNDEESWARI S P, JAMES JEBASEELAN SAMUEL E, SUNDARAGANESAN N. Molecular structure, vibrational spectra, NMR and UV spectral analysis of sulfamethoxazole[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2014, 118: 1-10. doi: 10.1016/j.saa.2013.07.063 [16] 陈天朗, 卢云, 肖慎修, 等. 对二氧化氯的一些新思考//二氧化氯研究与应用--2010二氧化氯与水处理技术研讨会论文集[C]. 上海, 2010: 296-299. CHEN T L, LU Y, XIAO S X, et al. Some new thinkings to chlorine dioxide[C]. Shanghai:2010: 296-299 (in Chinese).
[17] HOIGNÉ J, BADER H. Kinetics of reactions of chlorine dioxide (OClO) in water—I. Rate constants for inorganic and organic compounds[J]. Water Research, 1994, 28(1): 45-55. doi: 10.1016/0043-1354(94)90118-X [18] WENK J, AESCHBACHER M, SALHI E, et al. Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: Effects on its optical and antioxidant properties[J]. Environmental Science & Technology, 2013, 47(19): 11147-11156. [19] NAVALON S, ALVARO M, GARCIA H. Chlorine dioxide reaction with selected amino acids in water[J]. Journal of Hazardous Materials, 2009, 164(2/3): 1089-1097. [20] WANG Y L, LIU H J, XIE Y H, et al. Oxidative removal of diclofenac by chlorine dioxide: Reaction kinetics and mechanism[J]. Chemical Engineering Journal, 2015, 279: 409-415. doi: 10.1016/j.cej.2015.05.046 [21] 杨帅, 余晓敏, 郭学博, 等. 二氧化氯对典型磺胺类抗生素的降解机制[J]. 环境化学, 2019, 38(1): 34-41. doi: 10.7524/j.issn.0254-6108.2018012803 YANG S, YU X M, GUO X B, et al. Degradation mechanisms of sulfonamides by chlorine dioxide[J]. Environmental Chemistry, 2019, 38(1): 34-41 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018012803
[22] 郑丽英, 杨基峰, 欧利辉, 等. 水相中羟基自由基与磺胺甲恶唑反应机理的理论研究[J]. 环境化学, 2022, 41(12): 3965-3972. doi: 10.7524/j.issn.0254-6108.2022071601 ZHENG L Y, YANG J F, OU L H, et al. Theoretical investigation on the mechanisms for reactions of hydroxyl radicals with sulfamethoxazole in aqueous phase[J]. Environmental Chemistry, 2022, 41(12): 3965-3972 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022071601
[23] 焦晓微, 赵丹, 罗一, 等. 磺胺甲恶唑在羟基自由基作用下降解机理的密度泛函研究[J]. 安全与环境学报, 2013, 13(2): 40-46. doi: 10.3969/j.issn.1009-6094.2013.02.010 JIAO X W, ZHAO D, LUO Y, et al. Density functional studies of the reaction mechanism of sulfamethoxazole with hydroxyl radical[J]. Journal of Safety and Environment, 2013, 13(2): 40-46 (in Chinese). doi: 10.3969/j.issn.1009-6094.2013.02.010
[24] BEN W W, SHI Y W, LI W W, et al. Oxidation of sulfonamide antibiotics by chlorine dioxide in water: Kinetics and reaction pathways[J]. Chemical Engineering Journal, 2017, 327: 743-750. doi: 10.1016/j.cej.2017.06.157 [25] GUO W Q, YIN R L, ZHOU X J, et al. Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: Kinetics, mechanisms, and pathways[J]. Ultrasonics Sonochemistry, 2015, 22: 182-187. doi: 10.1016/j.ultsonch.2014.07.008 [26] SHAD A, CHEN J, QU R J, et al. Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: Kinetics, degradation products, and reaction pathways[J]. Chemical Engineering Journal, 2020, 398: 125357. doi: 10.1016/j.cej.2020.125357 [27] TROVÓ A G, NOGUEIRA R F P, AGÜERA A, et al. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation[J]. Water Research, 2009, 43(16): 3922-3931. doi: 10.1016/j.watres.2009.04.006 [28] DODD M C, HUANG C H. Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: Kinetics, mechanisms, and pathways[J]. Environmental Science & Technology, 2004, 38(21): 5607-5615.