-
制定水质标准的科学依据是水质基准[1],但目前的研究中,很少有针对我国水域的水质基准研究报道[2],我国现行水质标准的确定主要是依据国外的水质基准数值[3-4],但不同的生物区系与水质状况各不相同,这会导致水质基准产生明显差异[5-6]. 因此,基于我国水环境管理的迫切需求,应依据我国国情开展水质基准研究[7].
荧蒽(fluoranthene,FLU),是多环芳烃中4环芳烃的代表性化合物[8],也是水体中多环芳烃污染物的一个主要成分[9]. 然而,目前我国尚缺乏有关本土水生生物荧蒽的生态毒性数据,因此通过实验开展荧蒽的水生生物基准阈值研究工作,获得有关数据是十分必要的,同时对荧蒽在我国的水生生物基准的建立以及水环境相关工作等具有一定的现实意义与科学意义. 本研究进行了急性与慢性毒理学试验,参考美国的水质基准“指南”要求(“三门八科”最低毒性数据),以及对我国淡水生物区系特征和影响因素等具体分析,最终选取了符合物种筛选规定的9种具有典型代表性的中国本土水生生物进行试验. 根据实验结果得出荧蒽本土水生生物基准阈值,同时,本文分析比较了本土物种与美国物种毒性敏感度是否一致,其中美国物种毒性敏感度基于美国水生生物毒性数据,分析结果可表明在进行我国本土水生生物基准研究时,是否可以直接采用非本土水生生物毒性数据.
中国本土水生生物荧蒽水质基准研究
Development of native aquatic life water quality criteria for fluoranthene in China
-
摘要: 荧蒽是一种对水生生物有害的优控多环芳烃,在国内外水体中广泛存在. 然而,在目前关于荧蒽的科学研究中,其基准阈值报告较为少见,由于本土物种生态毒理学数据对荧蒽基准阈值的研究分析尤为重要,数据的缺失成为阻碍其发展的主要原因. 本文通过开展急性生态毒理学和慢性生态毒理学实验,并利用US EPA“指南”推荐的方法,推导了荧蒽的基准阈值,其中急性实验对象为9种本土水生生物,慢性实验为3种. 推导结果表明:荧蒽本土水生生物急性基准阈值(CMC)为0.570 mg·L−1,慢性基准阈值(CCC)为0.174 mg·L−1;另外,鉴于本土和非本土物种之间的巨大差别,文章中采用了SSD(species sensitivity distribution),即物种敏感性分布法,根据对二者敏感度分布的分析结果,可以发现本土与美国物种在敏感性分布上一致性较低,这也表明在推导我国荧蒽水生生物基准阈值时,可直接利用美国水生生物毒性数据的可能性很小.Abstract: Fluoranthene (FLU) is a priority polycyclic aromatic hydrocarbon (PAH) which is toxic to aquatic organisms. However, there has been no paper dealing with water quality criteria (WQC) of FLU due to the shortage of its toxicity data of different taxonomic levels. In the present study, toxicity data were obtained from 9 acute toxicity tests and 3 chronic toxicity tests using 9 Chinese native aquatic species from different taxonomic levels. Based on these toxicity data, the criterion maximum concentration and criterion continuous concentration were developed according to US EPA guidelines, and the values were 0.570 mg·L−1 and 0.174 mg·L−1, respectively. Furthermore, the comparison of the differences of species sensitivity distributions (SSD) between native and non-native species shows significant difference in the sensitivity distribution between native and non-native species, which indicated that using toxicity data of American species directly to derive the water quality criteria of FLU was impossible.
-
表 1 FLU 9种本土水生生物急性毒性实验信息
Table 1. Acute toxicity tests information of FLU to nine resident aquatic organisms
分类
Classification生物科
Families物种
Species生长阶段
Growth phase体重/g
Weight体长/cm
Length实验时间/h
Time浓度设置/ (mg·L−1)
Concentration脊索动物门 鲤科 锦鲤
(Rhodens sinensis)幼龄期
(<30 d)0.25 ± 0.05 3.0 ± 0.5 96 0.00, 2.40, 3.10, 4.00, 5.20, 6.80, 8.80, 11.40 麦穗
(Pseudorasbora parva)幼龄期
(<30 d)0.25 ± 0.02 2.5 ± 0.2 96 0.00, 2.40, 3.10, 4.00, 5.20, 6.80, 8.80, 11.40 鳅科 泥鳅
(Misgurnus anguillicaudatus)幼龄期
(<30 d)0.70 ± 0.05 6.0 ± 0.5 96 0.00, 0.96, 1.16, 1.39, 1.67, 2.00, 2.40, 2.88 蛙科 泽蛙蝌蚪
(Rana limnocharis)幼龄期
(<10 d)0.20 ± 0.02 1.6 ± 0.2 96 0.00, 3.50, 4.60, 5.50, 7.80, 10.10, 13.20, 17.10 节肢动物门 溞科 大型溞
(Daphnia magna)<24 h — — 48 0.00, 2.70, 3.60, 4.70, 6.20, 8.00, 10.40, 13.50 虾科 青虾(Macrobrachium nipponense) 幼龄期
(<10 d)0.25 ± 0.05 3.0 ± 0.2 96 0.00, 2.40, 3.10, 4.00, 5.20, 6.80, 8.80, 11.40 摇蚊科 摇蚊幼虫
(Chironomus plumosus)第3代
(幼虫)0.03 ± 0.01 1.0 ± 0.2 96 0.00, 2.70, 3.60, 4.70, 6.20, 8.00, 10.40, 13.50 环节动物门 颤蚓科 霍甫水丝蚓(Limnodrilus hoffmeisteri) 幼龄期
(<10 d)0.05 ± 0.01 1.5 ± 0.2 96 0.00, 3.40, 4.40, 5.70, 7.40, 9.60, 12.50, 16.20 腔肠动物门 水螅虫科 水螅属(Hydra sp.) 幼龄期
(<10 d)0.03 ± 0.01 1.0 ± 0.2 96 0.00, 1.39, 1.67, 2.00, 2.40, 2.88, 3.74, 4.87 表 2 FLU美国水生生物急性毒性数据
Table 2. Acute toxicity data of FLU to American aquatic organisms
排序
Rank物种
Species(LC50/EC50)/(mg·L−1) t/h 1 美洲海螯虾 0.6 96 2 浅绛单孔蚓 0.7 96 3 俄勒冈虾 0.8 96 4 蓝鳃太阳鱼 20.9 96 5 斑点叉尾鮰 36.0 96 6 端足虫 44.0 96 7 非洲爪蟾 52.0 96 8 隐居蜾嬴蜚 54.0 96 9 沙蟹 74.0 96 10 虹鳟 91.0 96 11 呆头鲦鱼 118.3 96 12 宽纹北箭蜓 139.9 96 13 伸展摇蚊 250.0 96 表 3 FLU本土水生生物急性试验结果
Table 3. Results of acute toxicity tests of FLU to resident aquatic organisms
物种
Species暴露时间/h
Exposure time公式
FormulaR2 P LC50/(mg·L−1) 锦鲤 96 y = 3.4458x + 2.2589 0.9268 <0.01 6.251 (5.748—6.443) 泥鳅 96 y = 1.4976x + 4.5875 0.9436 <0.01 1.887 (1.594—2.258) 大型溞 48 y = 3.8675x –2.0147 0.9850 <0.01 5.487 (5.012—5.897) 青虾 96 y = 2.5612x + 3.7744 0.9089 <0.01 3.011 (2.412—3.647) 霍甫水丝蚓 96 y = 1.5825x + 3.7347 0.9065 <0.01 6.313 (5.688—6.578) 麦穗 96 y = 1.6443x + 3.8262 0.854 <0.01 5.177 (4.231—5.593) 摇蚊幼虫 96 y = 2.3053x + 2.9664 0.9243 <0.01 7.628 (7.390—8.159) 水螅属 96 y = 1.3879x + 1.9976 0.9017 <0.01 2.032 (1.785—3.074) 泽蛙蝌蚪 96 y = 1.9267x + 3.1911 0.9044 <0.01 8.695(8.393—90.145) 表 4 FLU本土水生生物慢性试验结果
Table 4. Results of chronic toxicity tests of FLU to resident aquatic organisms.
物种
Species暴露时间/d
Exposure time终点
Endpoint公式
FormulaR2 P EC10/( mg·L−1) 锦鲤 28 生长(t/d) y = 4.5521x +2.8004 0.9930 <0.01 0.798 泥鳅 28 生长(t/d) y = 5.3131x –1.989 0.9743 <0.01 0.269 大型溞 28 生长(t/d) y = 4.7745x+ 1.667 0.8971 <0.05 1.187 第一窝时间 (t/d) y = 2.8499x+ 1.525 0.9572 <0.01 1.243 第一窝数量 (n) y = 3.8261x+ 0.657 0.9315 <0.01 0.987 总数量 (n) y= 3.7966x+ 1.0801 0.9203 <0.01 0.881 总窝数 (n) y= 3.7450x+ 1.4623 0.9364 <0.01 1.471 表 5 FLU水生生物种平均值及急慢性比
Table 5. Ranked GMAVs with SACRs.
排序
Rank物种
SpeciesSMAVs/(mg·L−1) GMAVs/(mg·L−1) SACRs 来源
Source1 泥鳅 1.887 1.887 7.01 本研究 2 水螅属 2.032 2.032 本研究 3 青虾 3.011 3.011 本研究 4 麦穗 5.177 5.177 6.49 本研究 5 大型溞 5.487 5.487 6.23 本研究 6 锦鲤 6.251 6.251 本研究 7 霍甫水丝蚓 6.313 6.313 本研究 8 摇蚊幼虫 7.628 7.628 本研究 9 泽蛙蝌蚪 8.695 8.695 本研究 植物 淡水藻 7.447 7.447 [20] -
[1] 武江越, 许国栋, 林雨霏, 等. 我国淡水生物菲水质基准研究 [J]. 环境科学学报, 2017, 37(12): 1-8. doi: 10.13671/j.hjkxxb.2017.0350 WU J Y, XU G D, LIN Y F, et al. Development of freshwater aquatic life water quality criteria for phenanthrene in China [J]. Acta Scientiae Circumstantiae, 2017, 37(12): 1-8(in Chinese). doi: 10.13671/j.hjkxxb.2017.0350
[2] 闫振广, 孟伟, 刘征涛, 等. 我国淡水水生生物镉基准研究 [J]. 环境科学学报, 2009, 29(11): 2393-2406. YAN Z G, MENG W, LIU Z T, et al. Biological criteria for freshwater Cd in China [J]. Acta Scientiae Circumstantiae, 2009, 29(11): 2393-2406(in Chinese).
[3] 金小伟, 雷炳莉, 许宜平, 等. 水生态基准方法学概述及建立我国水生态基准的探讨 [J]. 生态毒理学报, 2009, 4(5): 609-616. JIN X W, LEI B L, XU Y P, et al. Methodologies for deriving water quality criteria to protect aquatic life(ALC)and proposal for development of ALC in China: A review [J]. Asian Journal of Ecotoxicology, 2009, 4(5): 609-616(in Chinese).
[4] 罗茜, 查金苗, 雷炳莉, 等. 三种氯代酚的水生态毒理和水质基准 [J]. 环境科学学报, 2009, 29(11): 2241-2249. LUO Q, ZHA J M, LEI B L, et al. Review of the aquatic ecotoxicology and water quality criteria of three chlorophenols [J]. Acta Scientiae Circumstantiae, 2009, 29(11): 2241-2249(in Chinese).
[5] 吴丰昌, 孟伟, 宋永会, 等. 中国湖泊水环境基准的研究进展 [J]. 环境科学学报, 2008, 28(12): 2385-2393. WU F C, MENG W, SONG Y H, et al. Research progress in lake water quality criteria in China [J]. Acta Scientiae Circumstantiae, 2008, 28(12): 2385-2393(in Chinese).
[6] 闫振广, 孟伟, 刘征涛, 等. 我国典型流域镉水质基准研究 [J]. 环境科学研究, 2010, 23(10): 1221-1228. YAN Z G, MENG W, LIU Z T, et al. Development of aquatic criteria for cadmium for typical basins in China [J]. Research of Environmental Sciences, 2010, 23(10): 1221-1228(in Chinese).
[7] WU F C, MENG W, ZHAO X L, et al. China embarking on development of its own national water quality criteria system [J]. Environmental Science & Technology, 2010, 44(21): 7992-7993. [8] 焦婷婷. 多环芳烃荧蒽对植物和土壤生物毒害的剂量—效应关系及其土壤环境基准初探[D]. 南京: 南京农业大学, 2009. JIAO T T. Preliminary study on dose-effect relationship for fluoranthene’s toxicity to plant and soil organisms and TTS soil environmental criteria[D]. Nanjing: Nanjing Agricultural University, 2009 (in Chinese).
[9] 王丽平, 郑丙辉, 孟伟. 荧蒽对两种海洋硅藻生长、SOD活力和MDA含量的影响 [J]. 海洋通报, 2008, 27(4): 53-58. WANG L P, ZHENG B H, MENG W. Effects of fluoranthene on growth, SOD activity and MDA content of two marine diatoms [J]. Marine Science Bulletin, 2008, 27(4): 53-58(in Chinese).
[10] JIN X W, ZHA J M, XU Y P, et al. Derivation of aquatic predicted no-effect concentration (PNEC) for 2, 4-dichlorophenol: Comparing native species data with non-native species data [J]. Chemosphere, 2011, 84(10): 1506-1511. doi: 10.1016/j.chemosphere.2011.04.033 [11] 武江越, 刘征涛, 冯流, 等. 辽河水体中多环芳烃的分布特征及风险评估 [J]. 环境化学, 2012, 31(7): 1116-1117. WU J Y, LIU Z T, FENG L, et al. Distribution characteristics and risk assessment of polycyclic aromatic hydrocarbons in Liaohe River [J]. Environmental Chemistry, 2012, 31(7): 1116-1117(in Chinese).
[12] 刘明玉. 中国脊椎动物大全[M]. 沈阳: 辽宁大学出版社, 2000. LIU M Y. China vertebrate complete collection[M]. Shenyang: Liaoning University Publishing House, 2000(in Chinese).
[13] ANYAKORA C, OGBECHE A, PALMER P, et al. Determination of polynuclear aromatic hydrocarbons in marine samples of Siokolo Fishing Settlement [J]. Journal of Chromatography A, 2005, 1073(1/2): 323-330. [14] 伍献文. 中国经济动物志-淡水鱼类[M]. 北京: 科学出版社, 1963. WU X W. Fauna of economic animals in China-Freshwater fish[M]. Beijing: Science Press, 1963(in Chinese).
[15] EPA U S. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses[R]. Minnesota, U. S. : Environmental Protection Agency, 1985 [16] BORJA A, FRANCO J, PÉREZ V. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments [J]. Marine Pollution Bulletin, 2000, 40(12): 1100-1114. doi: 10.1016/S0025-326X(00)00061-8 [17] ASTM. Standard Guide for Conducting Acute Toxicity Tests with Fishes, Macroinvertebrates and Amphibians[M]. Philadelphia, USA, 1993. [18] BUHL K J, HAMILTON S J, SCHMULBACH J C. Chronic toxicity of the bromoxynil formulation Buctril® to Daphnia magna exposed continuously and intermittently [J]. Archives of Environmental Contamination and Toxicology, 1993, 25(2): 152-159. [19] FENG C L, WU F C, ZHAO X L, et al. Water quality criteria research and progress [J]. Science China Earth Sciences, 2012, 55(6): 882-891. doi: 10.1007/s11430-012-4384-5 [20] SMITH S B, SAVINO J F, BLOUIN M A. Acute toxicity to Daphnia pulex of six classes of chemical compounds potentially hazardous to great lakes aquatic biota [J]. Journal of Great Lakes Research, 1988, 14(4): 394-404. doi: 10.1016/S0380-1330(88)71572-5 [21] ALDENBERG T, JAWORSKA J S. Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions [J]. Ecotoxicology and Environmental Safety, 2000, 46(1): 1-18. doi: 10.1006/eesa.1999.1869 [22] BARATA C, CALBET A, SAIZ E, et al. Predicting single and mixture toxicity of petrogenic polycyclic aromatic hydrocarbons to the copepod Oithona davisae [J]. Environmental Toxicology and Chemistry, 2005, 24(11): 2992-2999. doi: 10.1897/05-189R.1 [23] DAVIES P E, COOK L S J, GOENARSO D. Sublethal responses to pesticides of several species of Australian freshwater fish and crustaceans and rainbow trout [J]. Environmental Toxicology and Chemistry, 1994, 13(8): 1341-1354. doi: 10.1002/etc.5620130816 [24] HOSE G C, van den BRINK P J. Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data [J]. Archives of Environmental Contamination and Toxicology, 2004, 47(4): 511-520. doi: 10.1007/s00244-003-3212-5 [25] 吴丰昌, 冯承莲, 曹宇静, 等. 锌对淡水生物的毒性特征与水质基准的研究 [J]. 生态毒理学报, 2011, 6(4): 367-382. WU F C, FENG C L, CAO Y J, et al. Toxicity characteristic of zinc to freshwater biota and its water quality criteria [J]. Asian Journal of Ecotoxicology, 2011, 6(4): 367-382(in Chinese).
[26] YAN Z G, ZHANG Z S, WANG H, et al. Development of aquatic life criteria for nitrobenzene in China [J]. Environmental Pollution, 2012, 162: 86-90. doi: 10.1016/j.envpol.2011.11.007 [27] VERBRUGGEN E M J, Van H R. Environmental risk limits for fluoranthene[R]. National Institute for Public Health and the Environment, 2012. [28] MARCHAL G, SMITH K E C, REIN A, et al. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil [J]. Environmental Pollution, 2013, 181: 200-210. doi: 10.1016/j.envpol.2013.06.026 [29] BLACK J A, BIRGE W J, WESTERMAN A G, et al. Comparative aquatic toxicology of aromatic hydrocarbons [J]. Fundamental and Applied Toxicology, 1983, 3(5): 353-358. doi: 10.1016/S0272-0590(83)80004-9 [30] GENDUSA T C, BEITINGER T L. External biomarkers to assess chromium toxicity in adult Lepomis macrochirus [J]. Bulletin of Environmental Contamination and Toxicology, 1992, 48(2): 237-242. [31] TURNER C H. The retention of dental posts [J]. Journal of Dentistry, 1982, 10(2): 154-165. doi: 10.1016/S0300-5712(82)80011-0 [32] BLAUSTEIN A R, KIESECKER J M, CHIVERS D P, et al. Effects of ultraviolet radiation on amphibians: Field experiments [J]. Integrative and Comparative Biology, 1998, 38(6): 799-812. [33] WEINSTEIN J E, GARNER T R. Piperonyl butoxide enhances the bioconcentration and photoinduced toxicity of fluoranthene and benzo[a]pyrene to larvae of the grass shrimp (Palaemonetes pugio) [J]. Aquatic Toxicology, 2008, 87(1): 28-36. doi: 10.1016/j.aquatox.2008.01.002 [34] SUEDEL B C, DEAVER E, RODGERS J H Jr. Experimental factors that may affect toxicity of aqueous and sediment-bound copper to freshwater organisms [J]. Archives of Environmental Contamination and Toxicology, 1996, 30(1): 40-46. doi: 10.1007/BF00211327 [35] SPEHAR R L, POUCHER S, BROOKE L T, et al. Comparative toxicity of fluoranthene to freshwater and saltwater species under fluorescent and ultraviolet light [J]. Archives of Environmental Contamination and Toxicology, 1999, 37(4): 496-502. doi: 10.1007/s002449900544